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Overview
We organize the material as follows. Section A shows more
details of the experiment settings. In Section B, we pro-
vide comparison results between using GT and PL for fine-
tuning with the additional stereo matching network archi-
tecture. Section C and Section D conducts additional ex-
periments about DKT. Section E presents more qualitative
results of the domain generalization performance.

A. Details of Experimental Setting
Dataset. We conduct our experiments by initializing
stereo matching networks with synthetic dataset pre-trained
weights and fine-tuning them in real-world scenarios. We
mainly focus on the robustness and domain generaliza-
tion ability after fine-tuning networks, and we also show
their target-domain performances to ensure networks actu-
ally learn from target domains. When not specifically men-
tioned, all networks in our experiments are pre-trained on
the SceneFlow [5] dataset. The introduction of the synthetic
and real-world datasets are as follows:
• SceneFlow [5] is a large synthetic dataset that consists

of 35,454 pairs of stereo images for training and 4,370
pairs for evaluation. Both sets have dense ground-truth
disparities. The resolution of the images is 960 × 540.
Besides the original clean pass, the dataset also contains
a final pass. The final pass has motion blur and defocus
blur, making it more similar to real-world images. Scene-
Flow is currently the most commonly used dataset for pre-
training stereo matching networks.

• KITTI 2012 [2] collects outdoor driving scenes with
sparse ground-truth disparities. It contains 194 training
samples and 195 testing samples with a resolution of
1226× 370.

• KITTI 2015 [6] collects driving scenes with sparse dispar-
ity maps. It contains 200 training samples and 200 testing
samples with a resolution of 1242× 375.

• Booster [7] contains 228 samples for training and 191
samples for online testing in 64 different scenes with
dense ground-truth disparities. Most of the collected
scenes have challenging non-Lambertian surfaces. We
use the quarter resolution in our experiments.

• Middlebury [8] consists of 15 training and 15 testing
stereo pairs captured indoors. The dataset offers images
at full, half, and quarter resolutions. We use the half-
resolution training set for domain generalization evalua-
tion.

• ETH3D [9] consists of 27 grayscale image pairs for train-
ing and 20 for testing. It includes both indoor and outdoor

scenes. We use the training set for domain generalization
evaluation.

• DrivingStereo [15] is a large-scale real-world driving
dataset. A subset of it contains 2,000 stereo pairs col-
lected under different weather (sunny, cloudy, foggy, and
rainy). We use the half resolution of these challenging
scenes to evaluate the robustness after fine-tuning on the
KITTI datasets.

Local Dataset Split. Except for online submissions, we
conduct the experiments based on local train and validation
splits. For the KITTI 2012 and 2015 datasets, we follow
GWCNet [3] to split 14 stereo pairs of 2012 and 20 pairs
of 2015 for validation, the remaining 360 pairs are used for
training. For the booster dataset, we use the ‘Washer’ and
‘OilCan’ scenes (15 stereo pairs) for validation, and the re-
maining 213 pairs for training. In this material, we also con-
duct fine-tuning experiments on Middlebury and ETH3D
datasets, following the data split in [4]. We use the ‘ArtL’
and ‘Playroom’ scenes (2 stereo pairs) for Middlebury val-
idation and the ‘facade’ and ‘forest’ scenes (3 stereo pairs)
for ETH3D validation.

B. Network Architecture for GT vs. PL

In the main paper, we investigate the distinct behaviors of
Ground Truth (GT) and Pseudo Label (PL) during fine-
tuning. We achieve this by dividing pixels into different re-
gions (Xc(τ), Xinc(τ), Xinvalid) and conducting compre-
hensive comparisons between them. In addition to the iter-
ative optimization based IGEV-Stereo [12], we employ the
3D convolution-based CFNet [10] to affirm that our find-
ings are applicable across diverse stereo matching network
architectures. As presented in Table I, learning new knowl-
edge without sufficient regularization and overfitting GT de-
tails are two primary contributors to the degradation of do-
main generalization ability during the fine-tuning.

C. Additional Ablations about DKT

C.1. Fine-grained Permutations

In F&E-GT, we leverage the exponential moving average
(EMA) Teacher’s prediction to serve as fine-grained per-
mutations for GT. In this section, we present ablations with
alternative permutations. Specifically, we apply F&E-GT
using the EMA Teacher for filtering out inconsistent re-
gions but with variations in permutations. We use random
noise from (-1, 1), PL from the frozen Teacehr, and the
EMA Teacher’s prediction for ablation and visualize the
three kinds of fine-grained permutations in Figure I. The



Supervision 2012 2015 Midd ETH3D Booster

Training set KITTI 2012 & 2015
zero-shot 5.71 4.84 15.77 5.48 38.84
GT(valid) 2.15 1.39 19.83 29.94 30.95

GT(Xc(3)) 2.26 1.67 17.92 24.52 30.88
GT(Xinc(3)) 21.33 18.49 31.78 58.35 43.06
GT(Xc(1)) 2.67 1.95 16.27 14.67 31.16

PL(all) 5.05 4.26 13.71 4.86 29.92
PL(valid) 5.58 4.64 14.78 6.05 30.79

PL(Xc(3)) 3.32 3.01 14.09 5.50 30.97
PL(Xinc(3)) 8.91 8.08 18.30 12.45 40.17
PL(Xc(1)) 2.94 2.57 15.38 5.80 31.34
Training set Booster

zero-shot 4.97 6.31 15.77 5.48 35.03
GT(valid) 56.20 71.41 18.45 80.53 25.86

GT(Xc(3)) 4.39 6.04 13.53 20.90 26.85
GT(Xinc(3)) 97.27 97.86 77.44 99.89 45.69
GT(Xc(1)) 4.31 6.19 13.77 21.80 26.13

PL(all) 4.24 5.19 11.38 5.42 28.34
PL(valid) 4.33 5.11 11.48 5.51 28.05

PL(Xc(3)) 3.98 4.65 11.25 5.39 27.40
PL(Xinc(3)) 5.56 7.68 16.81 6.08 36.44
PL(Xc(1)) 3.79 4.98 11.03 5.59 27.54

Table I. Results of using different regions of GT or PL to fine-tune
CFNet [10]. Different regions play varied roles during fine-tuning.
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Figure I. Visualization with the absolute value of three kinds of
fine-grained permutations.

results are presented in Table II. Our findings demonstrate
that employing the frozen Teacher or EMA Teacher to add
permutations better preserves domain generalization ability
than random noise. Moreover, utilizing the EMA Teacher
yields better target-domain performance compared to the
frozen Teacher. We attribute this improvement to the EMA
Teacher progressively predicting more accurate disparities.

Method 2012 2015 Midd ETH3D Booster

Training set KITTI 2012 & 2015
random noise 1.94 1.39 11.08 19.79 17.93

F.T. 1.94 1.40 9.60 12.34 17.57
EMA.T. 1.93 1.38 9.62 12.31 17.46

Training set Booster
random noise 11.55 12.28 9.54 7.73 12.85

F.T. 9.48 10.96 7.81 5.93 12.89
EMA.T. 9.42 11.04 7.56 6.11 12.76

Table II. Ablation of fine-grained permutations. F.T.: the frozen
Teacher. PL serves as better permutations than random noise.

C.2. Effects of the Frozen Teacher

An alternative way to using the frozen Teacher’s prediction
with F&E-PL is directly using the EMA Teacher’s predic-
tion, which progressively predicts more accurate disparities.
An overview of DKT without the frozen Teacher is shown
in Figure II. We show the comparison in Table III. Using
the frozen Teacher’s prediction gets improvements in tar-
get domains than using the frozen Teacher’s prediction with
F&E-PL, however, it leads to a slight drop in domain gener-
alization ability than using the Frozen Teacher’s prediction.

EMA

Teacher 

Student 

F&E-GT

ℒ

Stereo Images

GT and Valid Mask

Student Prediction

EMA Teacher 

Prediction

Improved GT and Valid Mask

EMA Teacher Prediction

Figure II. DKT framework without the frozen Teacher.

Method 2012 2015 Midd ETH3D Booster

Training set KITTI 2012 & 2015
DKT(w/o F.T.) 1.97 1.34 8.02 4.43 15.65

DKT(full) 1.98 1.39 7.11 3.64 15.51
Training set Booster

DKT(w/o F.T.) 3.72 4.86 7.00 3.89 12.23
DKT(full) 3.49 4.71 6.61 2.60 12.63

Table III. Effects of the using frozen Teacher to produce PL. F.T.:
the frozen Teacher. Using the frozen Teacher to produce PL pre-
serves the domain generalization ability better.

D. Additional Experiments about DKT

D.1. DKT vs. DG Methods

Training robust stereo matching networks on synthetic
datasets has been well-researched recently [1, 16, 17]. We
compare our methods with domain generalization methods
and verify if these methods work well for real-world fine-
tuning. We use ITSA [1] and Asymmetric Augmentation
[14] for comparison. As shown in Table IV, domain gen-
eralization methods designed for synthetic data pre-training
fail in this case. We think differences between synthetic and
real data may render previous methods unsuitable: exist-
ing methods reduce shortcuts learning caused by synthetic
artifacts [1], while real-world data is actually real and the
factors degrade generalization ability can be different.

D.2. Stereo Matching Network Architectures

In the main paper, we conduct our experiments with ro-
bust iterative optimization based stereo matching networks.
Here we conduct experiments using other network archi-
tectures. We fine-tune CFNet [10] and CGI-Stereo [13],



Method 2012 2015 Midd ETH3D Booster

Training set KITTI 2012 & 2015
baseline 1.94 1.36 12.23 23.88 18.43
ITSA [1] 2.01 1.43 12.59 25.72 17.98
Asy.Aug 1.98 1.34 12.67 23.37 18.02

DKT 1.98 1.39 7.11 3.64 15.51
Training set Booster

baseline 52.30 55.44 19.78 93.31 12.88
ITSA [1] 51.95 56.97 18.77 98.78 13.01
Asy.Aug 55.79 58.36 18.51 95.43 12.79

DKT 3.49 4.71 6.61 2.60 12.63

Table IV. Comparison with domain generalization methods. The
previous methods designed for building domain generalized stereo
networks during synthetic data pre-training fail to preserve the do-
main generalization ability during fine-tuning.

which have great domain generalization ability after pre-
training on synthetic data. We show the results in Table V.
Compared to the baseline fine-tuning strategy with GT, net-
works fine-tuned with DKT show better generalization abil-
ity. Furthermore, We explore fine-tuning the recent Croco-
Stereo [11] that builds transformers and train networks with
the self-supervised task on a large scale of data. After
self-supervised pre-training, Croco-Stereo trains networks
to conduct stereo matching jointly on various datasets in-
cluding SceneFlow, Middlebury, ETH3D, and Booster. We
fine-tune Croco-Stereo in the KITTI datasets and evaluate
the target and cross domain performance. We note that the
cross-domain evaluation in this setting is not to represent
the domain generalization ability of the model, but can rep-
resent how the model forgets previously seen scenarios. We
do not fine-tune Croco-Stereo in the Booster datasets be-
cause it has seen the validation set during pre-training.

Method 2012 2015 Midd ETH3D Booster

Training set KITTI 2012 & 2015
CFNet [10] * 5.71 4.84 15.77 5.48 38.84

CFNet(ft) 2.15 1.39 19.83 29.94 30.95
DKT-CFNet 2.23 1.47 12.98 6.16 30.27

CGI-Stereo [13] * 6.55 5.49 13.91 6.30 33.38
CGI-Stereo(ft) 2.41 1.58 18.62 29.84 30.51

DKT-CGI 2.26 1.63 14.31 7.12 29.09
Croco-Stereo [11] * 12.21 18.16 2.62 0.13 8.30

Croco-Stereo(ft) 1.81 1.22 7.83 2.19 23.12
DKT-Croco 1.78 1.26 3.08 1.27 9.81

Training set Booster
CFNet [10] * 4.97 6.31 15.77 5.48 35.03

CFNet(ft) 56.20 71.41 18.45 80.53 25.86
DKT-CFNet 3.57 4.26 11.17 5.38 26.11

CGI-Stereo [13] * 5.90 6.02 13.91 6.30 30.23
CGI-Stereo(ft) 30.93 46.84 20.34 46.79 23.87

DKT-CGI 5.38 5.11 13.83 6.37 23.60

Table V. Results of fine-tuning with more network architectures.
* uses pre-trained weights provided by the authors. Our proposed
DKT framework can be applied to various network architectures
and preserves their domain generalization ability.

D.3. Fine-tuning on More Datasets

We perform fine-tuning on the Middlebury and ETH3D
datasets, following the data split in MCV-MFC [4]. The
experimental results are presented in Table VI. Notably, we
observe that fine-tuning on these two datasets can lead to
a degradation in generalization ability to some unseen do-
mains. However, it’s noteworthy that fine-tuning on Mid-
dlebury and ETH3D can enhance performance on specific
unseen datasets, and overall, the degradation in domain gen-
eralization is less pronounced compared to fine-tuning on
KITTI and Booster. We think this difference is attributed
to the fact that Middlebury and ETH3D datasets contain lit-
tle transparent or mirrored (ToM) surfaces, which have a
substantial impact on degrading domain generalization abil-
ity. The modest performance gaps between pre-trained net-
works and those subjected to fine-tuning suggest that the
acquisition of new knowledge during the fine-tuning pro-
cess may be relatively limited. Moreover, for both datasets,
employing DKT during fine-tuning demonstrates better do-
main generalization ability than using only GT.

Method 2012 2015 Midd ETH3D Booster

Training set Middlebury 2014
IGEV-Stereo [12] * 5.13 6.04 5.03 3.61 17.62

IGEV-Stereo(ft) 4.02 5.01 3.81 4.97 15.26
DKT-IGEV 3.47 4.62 3.83 2.97 14.23
Training set ETH3D

IGEV-Stereo [12] * 5.13 6.04 7.06 3.09 17.62
IGEV-Stereo(ft) 5.19 5.62 12.31 2.26 22.57

DKT-IGEV 4.81 5.59 7.32 2.23 17.33

Table VI. Results of fine-tuning networks on more datasets. * uses
pre-trained weights provided by the authors. Networks fine-tuned
by the DKT framework show better robustness to unseen domains.

D.4. Joint Generalization

In addition to fine-tuning stereo matching networks on indi-
vidual real-world scenarios, we employ DKT for joint fine-
tuning across multiple domains. Besides assessing perfor-
mance in target domains, we also evaluate the domain gen-
eralization ability on previously unseen DricingStereo sce-
narios. The results, presented in Table VII, demonstrate that
using DKT for joint fine-tuning yields comparable results
across multiple seen domains, while exhibiting superior ro-
bustness on unseen scenarios.

E. Additional Qualitative Results
In this section, we provide additional qualitative results of
the domain generalization performance of stereo match-
ing networks fine-tuned with only GT and DKT. Com-
pared to using only GT for fine-tuning, DKT effectively
preserves the networks’ robustness to unseen domains after
fine-tuning. Figures III to V use the same networks fine-
tuned on the KITTI datasets and show the performance on



Method 2012 2015 Middlebury ETH3D Booster DrivingStereo
>3px(%) >3px(%) >2px(%) >1px(%) >2px(%) sunny cloudy foggy rainy avg

CFNet [10] 2.47 1.78 6.96 1.99 30.43 2.75 2.49 2.03 6.39 3.42
DKT-CFNet 2.51 1.80 5.92 1.81 18.55 2.20 2.34 1.89 3.55 2.50

IGEV-Stereo [12] 2.00 1.56 3.80 1.98 12.83 2.29 1.89 1.49 8.19 3.47
DKT-IGEV 2.02 1.54 3.79 2.01 11.19 2.23 1.81 1.42 3.31 2.19

Table VII. Results of joint generalization. Networks are fine-tuned on a combination of KITTI 2012, KITTI 2015, Middlebury, ETH3D,
and Booster datasets. Networks fine-tuned by the DKT framework show competitive joint generalization performance, as well as better
robustness to unseen challenging weather.

unseen Middlebury, Booster, and ETH3D domains. Fig-
ures VI to IX use the same networks fine-tuned on the
Booster dataset and show the performance on unseen KITTI
2012, KITTI 2015, Middlebury, and ETH3D domains.



Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure III. Qualitative results of KITTI fine-tuned networks on the Middlebury training set. The left panel shows the left input image and
the ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.

Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure IV. Qualitative results of KITTI fine-tuned networks on the Booster training set. The left panel shows the left input image and the
ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.



Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure V. Qualitative results of KITTI fine-tuned networks on the ETH3D training set. The left panel shows the left input image and the
ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.



Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure VI. Qualitative results of Booster fine-tuned networks on the KITTI 2012 training set. The left panel shows the left input image and
the ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.

Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure VII. Qualitative results of Booster fine-tuned networks on the KITTI 2015 training set. The left panel shows the left input image and
the ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.



Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure VIII. Qualitative results of Booster fine-tuned networks on the Middlebury training set. The left panel shows the left input image
and the ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity
prediction.

Left Image RAFT-Stereo DKT-RAFT(ours) IGEV-Stereo DKT-IGEV(ours)

Figure IX. Qualitative results of Booster fine-tuned networks on the ETH3D training set. The left panel shows the left input image and the
ground truth disparity. For each example, the first row shows the error map and the second row shows the colorized disparity prediction.



References
[1] WeiQin Chuah, Ruwan Tennakoon, Reza Hoseinnezhad,

Alireza Bab-Hadiashar, and David Suter. Itsa: An
information-theoretic approach to automatic shortcut avoid-
ance and domain generalization in stereo matching networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13022–13032, 2022.
2, 3

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012. 1

[3] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and
Hongsheng Li. Group-wise correlation stereo network. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3273–3282, 2019. 1

[4] Zhengfa Liang, Yulan Guo, Yiliu Feng, Wei Chen, Linbo
Qiao, Li Zhou, Jianfeng Zhang, and Hengzhu Liu. Stereo
matching using multi-level cost volume and multi-scale fea-
ture constancy. IEEE transactions on pattern analysis and
machine intelligence, 43(1):300–315, 2019. 1, 3

[5] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 1

[6] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 1

[7] Pierluigi Zama Ramirez, Fabio Tosi, Matteo Poggi, Samuele
Salti, Stefano Mattoccia, and Luigi Di Stefano. Open chal-
lenges in deep stereo: the booster dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21168–21178, 2022. 1

[8] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,
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