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Supplementary Material

In this supplementary material, we first introduce the
preliminaries of Diffusion and CLIP in Section A. Follow-
ing that, we provide an in-depth discussion on our Detail-
Preserving Image Encoder in Section B. In subsequent sec-
tions, we introduce the methods we compared against and
the user study we conducted, specifically in Section C and
Section D respectively. We also present our results on
human image generation in Section E. Additional results
from our work on Dreambench and Multi-subject bench
are showcased in Section G. We then provide further de-
tails about our training data and Multi-subject bench in
Section H. In Section I and Section J, we present the out-
comes generated by combining our SSR-encoder with Con-
trolNet [24] and animatediff [5], which not only demon-
strates the generalization of our SSR encoder but also illus-
trates its seamless applicability in the realm of controllable
generation and video generation for maintaining character
consistency with reference images. Lastly, we analyze the
broader impact brought by our method and the limitation of
our method in Section K and Section L.

A. Preliminaries

A.1. Preliminary for Diffusion Models

Diffusion Model (DM) [7, 21] belongs to the category of
generative models that denoise from a Gaussian prior xT to
target data distribution x0 by means of an iterative denois-
ing procedure. The common loss used in DM is:

Lsimple(θ) := Ex0,t,ϵ

[
∥ϵ− ϵθ (xt, t)∥22

]
, (1)

where xt is an noisy image constructed by adding noise
ϵ ∈ N (0,1) to the natural image x0 and the network ϵθ(·)
is trained to predict the added noise. At inference time, data
samples can be generated from Gaussian noise ϵ ∈ N (0,1)
using the predicted noise ϵθ(xt, t) at each timestep t with
samplers like DDPM [7] or DDIM [20].

Latent Diffusion Model (LDM) [17] is proposed to
model image representations in autoencoder’s latent space.
LDM significantly speeds up the sampling process and
facilitates text-to-image generation by incorporating addi-
tional text conditions. The LDM loss is:

LLDM (θ) := Ex0,t,ϵ

[
∥ϵ− ϵθ (xt, t, τθ(c))∥22

]
, (2)

where x0 represents image latents and τθ(·) refers to the
BERT text encoder [3] used to encodes text description ct.

Stable Diffusion (SD) is a widely adopted text-to-image
diffusion model based on LDM. Compared to LDM, SD is
trained on a large LAION [19] dataset and replaces BERT
with the pre-trained CLIP [16] text encoder.

A.2. Preliminary for CLIP

CLIP [16] consists of two integral components: an im-
age encoder represented as F (x), and a text encoder, rep-
resented as G(t). The image encoder, F (x), transforms an
image x with dimensions R3×H×W (height H and width
W ) into a d-dimensional image feature fx with dimensions
RN×d, where N is the number of divided patches. On the
other hand, the text encoder, G(t), creates a d-dimensional
text representation gt with dimensions RM×d from natural
language text t, where M is the number of text prompts.
Both encoders are concurrently trained using a contrastive
loss function that enhances the cosine similarity of matched
pairs while reducing that of unmatched pairs. After training,
CLIP can be applied directly for zero-shot image recogni-
tion without the need for fine-tuning the entire model.

B. Designing Choice of Image Encoder
In this section, we conduct a preliminary reconstruction

experiment to demonstrate that vanilla image features fail
to capture fine-grained representations of the target subject
and verify the effectiveness of our method. We first in-
troduce our experimental setup and evaluation metrics in
Sec. B.1. Subsequently, we explain the implementation de-
tails of each setting in Sec. B.2. Finally, we conduct quali-
tative and quantitative experiments in Sec. B.3 to prove the
superiority of our proposed methods compared to previous
works.

B.1. Experimental Setup

In our image reconstruction experiment, we investigate
four types of image features. The details are as shown in
Fig. 1:
• Setting A: CLIP Image Features. In this setting, we em-

ploy the vanilla CLIP image encoder to encode the input
image and utilize the features from the final layer as the
primary representation for subsequent reconstruction.

• Setting B: DINOv2 Image Features. Analogous to set-
ting A, we replace the CLIP image encoder with the DI-
NOv2 encoder to extract the features.

• Setting C: Fine-tuned CLIP Image Features. With the
goal of recovering more fine-grained details while pre-
serving text-image alignment, we fine-tune the last layer



Figure 1. Details for each setting.

parameters of the CLIP image encoder using a CLIP reg-
ularization loss.

• Setting D: Multi-scale CLIP Image Features. Instead
of fine-tuning, we resort to using features from different
scales of the CLIP backbone as the image representations.
To verify the effectiveness of our methods, we employ

the following metrics: Perceptual Similarity (PS) [25] and
Peak Signal-to-Noise Ratio (PSNR) to assess the quality
of reconstruction, CLIP-T [6] and Zero-Shot ImageNet
Accuracy (ZS) [2] to access the preservation of text-image
alignment in image encoder variants.

As for data used in our preliminary experiments, we uti-
lize a subset of LAION-5B [19]. This dataset comprises
approximately 150,000 text-image pairs for training and a
further 10,000 text-image pairs designated for testing.

B.2. Implementation Details

We use OpenCLIP ViT-L/14 [8] and DINOv2 ViT-
L/14 [15] as the image encoders and all images are resized
to 224×224 for training. The model underwent 100,000
training iterations on 4 V100 GPUs, using a batch size of 32
per GPU. We adopt the Adam optimizer [9] with a learning
rate of 3e-4 and implement the one-cycle learning sched-
uler. To better preserve the pre-trained weights, we set the
learning rate of the image encoder as 1/10 of the other pa-
rameters if fine-tuning is required. We adopt the same archi-
tecture of the VAE decoder in LDM [17] with an extra up-
sampling block and employ nearest interpolation to obtain
the final reconstruction results. We adopt L2 reconstruction
loss in all our settings and additionally employ Lclip when
fine-tuning the CLIP encoder.

B.3. Experiment Results

Qualitative results. To demonstrate the effectiveness of
our method, we present reconstruction results in Fig. 2. It
is observed that vanilla CLIP image features and DINOv2
features only result in rather blurry outcomes. By contrast,
both fine-tuned CLIP image features and multi-scale CLIP
image features manage to retain more details. Specifically,
multi-scale CLIP image features is able to generate sharp
edges without obvious degradations. Consequently, we in-
fer that multi-scale features are more competent at preserv-

ing the fine-grained details we require.

Figure 2. Comparisons of different settings.
Quantitative results. The quantitative results are shown

in Table 1. In terms of reconstruction quality, it’s notewor-
thy that both the fine-tuned CLIP image features and multi-
scale CLIP image features are adept at producing superior
outcomes, exhibiting lower perceptual similarity scores and
higher PSNR. This indicates that these features are more
representative than either vanilla CLIP image features or
DINOv2 features. However, despite the assistance from
CLIP regularization loss, fine-tuned CLIP image features
still suffer significant degradation in text-image alignment,
which fails to meet our requirements. Consequently, we opt
for multi-scale features as our primary method for extract-
ing subject representation.

Table 1. Comparisons of different settings.
Settings PS ↓ PSNR ↑ CLIP-T ↑ ZS ↑

A 0.0036 28.63 0.1816 75.3%
B 0.0013 28.56 – –
C 0.0004 29.73 0.1394 68.4%
D 0.0006 29.49 0.1816 75.3%

C. Details of Comparison Experiments
C.1. Details of Compared Methods

1. Finetune-based Methods:
– Textual Inversion [4]: A method to generate spe-

cific subjects by describing them using new “words”
in the embedding space of pre-trained text-to-image
models.

– Dreambooth [18]: A method of personalized im-
age generation by fine-tuning the parameters in dif-
fusion U-Net structure.

– Break-A-Scene [1]: Aims to extract a distinct text
token for each subject in a single image, enabling
fine-grained control over the generated scenes.

2. Finetune-free Methods:
– Reference only [14]: Guide the diffusion directly

using images as references without training through
simple feature injection.

– ELITE [22]: An encoder-based approach encodes
the visual concept into the textual embeddings for
subject-driven image generation.



Figure 3. User study comparisons of different methods.

– IP-adapter [23]: Focuses on injecting image infor-
mation without fine-tuning the base model.

– BLIPDiffusion [11]: Combines BLIP’s language-
image pretraining with diffusion models.

These methods were chosen for their relevance and ad-
vancements in the field, providing a robust frame of ref-
erence for evaluating the performance and innovations of
our SSR-Encoder.

C.2. Details of Implementation

In order to achieve a fair comparison, all the methods are
implemented using the official open-source code based
on SD v1-5 and the official recommended parameters.
For the Multi-subject bench, all the methods use a sin-
gle image as input and utilize different subjects to guide
the generation. We provide 6 different text prompts for
each subject on each image and generate 6 images for
each text prompt. For Dreambench, we follow [11, 18]
and generate 6 images for each text prompt provided by
DreamBench.

D. User Study
We conducted a user study to compare our method with

DB, TI, Break-A-Scene, ELITE, and IP-adapter perceptu-
ally. For each evaluation, each user will see one input image
with multiple concepts, two different prompts for different
concepts, and 5 images generated by each prompt and each
method. 60 evaluators were asked to rank each generated
image from 1 (worst) to 5 (best) concerning its selectiv-
ity, text-image alignment, subject alignment, and genera-
tive quality. The results are shown in Table. 3 indicate that
our method outperforms the comparison methods in gen-
erative quality and better balances subject consistency and

text-image alignment.

E. Human Image Generation
Despite the SSR-Encoder not being trained in domain-

specific settings (such as human faces), it is already capa-
ble of capturing the intricate details of the subjects. For
instance, similar to the method outlined in [13], we utilize
face images from the OpenImages dataset [10] as reference
images for generating human images. Fig. 5 showcases
samples of the face images we generated. To better illus-
trate our results, we also employ images of two celebrities
as references.

F. Ablations of τ and λ

As shown in Fig. 4 (a), under the same training settings,
when τ was 0.01, the model managed to balance both iden-
tity consistency and selectivity. The effects of different λ
values on the images under ablation and fixed seed condi-
tions are shown in Fig. 4 (b). The smaller λ, the weaker the
influence of the reference image.

G. Examples of Evaluation Samples
In this section, we present more evaluation samples in

our method on two different test datasets: Multi-Subject
bench and DreamBench bench in Fig. 6, Fig. 7, and Fig. 8.

Moreover, we present more qualitative comparison re-
sults in Fig. 9. As illustrated in the figure, our approach is
more adept at focusing on the representation of distinct sub-
jects within a single image, utilizing a query to select the
necessary representation. In contrast to other methods, our
method does not result in ambiguous subject extraction, a
common issue in finetune-based methods. For instance, in



Figure 4. Visual ablation results of τ and λ.

the Dreambooth row from Fig. 9, two subjects frequently
appear concurrently, indicating a low level of selectivity.
When considering selectivity, generative quality, and text-
image alignment, our SSR-Encoder surpasses all methods
and achieves the level of finetune-based methods in terms
of subject alignment.

H. Details of Our Training Data and the Multi-
subject Bench

• Details of training data. Our model utilizes the Laion 5B
dataset[19], selecting images with aesthetic scores above
6.0. The text prompts are re-captioned using BLIP2 [12].
The dataset comprises 10 million high-quality image-text
pairs, with 5,000 images reserved for testing and the re-
mainder for training. Clearly, the distribution of training
data has a significant impact on our model. The more a
particular type of subject data appears in the training data
capt, the better our performance on that type of subject.
Therefore, we further analyze the word frequency in the
training data caption and report the most frequent subject
descriptors in the table2.

• Details of multi-subject bench. The Multi-subject
Bench comprises 100 images from our test data. More
specifically, the data is curated based on the caption as-
sociated with each image from our test set. An image
progresses to the next stage if its caption contains at least

Table 2. The most frequent subject descriptors in our training data.
Subject frequency Subject frequency subject frequency

woman 1528518 suit 256732 dog 164819
man 1256613 trees 240771 snow 163838

people 536434 hair 229538 girl 162311
table 385643 wooden 216958 hat 157549

mountain 315765 street 212259 flowers 152308
chairs 291189 house 191785 sky 151332
dress 268058 building 168670 cat 147851

two subject descriptors. Subsequently, we verify the con-
gruence between the caption and the image. If the image
aligns with the caption and adheres to human aesthetic
standards, it is shortlisted as a candidate image. Ulti-
mately, we meticulously selected 100 images from these
candidates to constitute the Multi-subject Bench.

I. Compatibility with ControlNet
Our SSR-Encoder can be efficiently integrated into con-

trollability modules. As demonstrated in Fig. 10, we present
additional results of amalgamating our SSR-Encoder with
ControlNet [24]. Our approach can seamlessly merge with
controllability modules, thereby generating controllable im-
ages that preserve consistent character identities in align-
ment with reference images.

J. Compatibility with AnimateDiff
Our SSR-Encoder is not only versatile enough to adapt

to various custom models and controllability modules, but it
can also be effectively applied to video generation, integrat-
ing seamlessly with video generation models. In Fig. 11,
we demonstrate the impact of combining our SSR-Encoder
with Animatediff [5]. Despite not being trained on video
data, our method can flawlessly combine with Animatediff
to produce videos that maintain consistent character identi-
ties with reference images.

K. Broader Impact
Our method in subject-driven image generation holds

significant potential for advancing the field of text-to-image
generation, particularly in creating personalized images.
This technology can be applied across various domains such
as personalized advertising, artistic creation, and game de-
sign, and can enhance research at the intersection of com-
puter vision and natural language processing. However,
while the technology has numerous positive applications,
it also raises ethical and legal considerations. For instance,
generating personalized images using others’ images with-
out appropriate permission could infringe upon their privacy
and intellectual property rights. Therefore, adherence to rel-
evant ethical and legal guidelines is crucial. Furthermore,
our model may generate biased or inappropriate content if
misused. We strongly advise against using our model in



user-facing applications without a thorough inspection of
its output and recommend proper content moderation and
regulation to prevent undesirable consequences.

L. Limitation
Due to the uneven distribution of the filtered training

data, we found that the fidelity will be slightly worse for
some concepts that are uncommon in our training data. This
can be addressed by increasing the training data. We plan
to address these limitations and extend our approach to 3D
generation in our future work.



Figure 5. Results for human image generation.



Figure 6. Examples of evaluation samples on the multi-subject bench.



Figure 7. Examples of evaluation samples on the multi-subject bench.



Figure 8. Examples of evaluation samples on the dreambench.



Figure 9. More results of the qualitative comparison.



Figure 10. Results of combining our SSR-Encoder with controlnet.



Figure 11. Results of combining our SSR-Encoder with Animatediff.
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