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Supplementary Material

In this document, we provide the following supplemen-
tary content:

• Dataset Details

• Evaluation Metrics

• Implementation Details

• Semantic Attention Visualization

• Ablation Study

• Additional Results

A. Dataset Details

Test set and fine-tuning set details. We download 45
source motions of source characters including Y Bot, X Bot
and Ortiz for testing and fine-tuning. More details can be
found in Tab. 7. As we focus on the preservation of se-
mantics, we choose the motions that are free of interpene-
tration and have obvious semantics which can be accurately
described by text descriptions. To compute the MSE met-
ric, we download the corresponding ground truth data pro-
vided by Mixamo of target characters including Aj, Kaya
and Mousey. The ground truth is mainly created by copy-
ing the rotations of corresponding joints from the source
character thus suffering from interpenetration and seman-
tic loss. In order to equip our model with abundant infor-
mation about geometry skinning and motion semantics, we
carefully choose motions that explore the entire movement
space of each source character for fine-tuning the model.

B. Evaluation Metrics

We evaluate the performance of our method across three
key dimensions: skeleton, geometry, and semantics. At the
skeletal level, we measure the Mean Square Error (MSE)
between retargeted joint positions P̂B and ground truth PB

provided by Mixamo, normalized by the character height
hB . We compare both the global and the local joint posi-
tions. The local MSE is calculated when the root position is
aligned with the ground truth.
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At the geometric level, we evaluate the interpenetration
percentage, which is calculated as the ratio of the number
of penetrated vertices to the total number of vertices in each
frame. A lower ratio indicates less interpenetration occurs.

PEN =
Number of penetrated vertices

Total number of vertices
× 100% (13)

At the semantic level, we utilize the Image-Text Match-
ing (ITM) score, Fréchet inception distance (FID) and se-
mantics consistency loss as metrics to evaluate the seman-
tics consistency. The task of Image-Text Matching [15] is
to measure the visual-semantic similarity between an im-
age and a textual description via a two-class linear classifier
Fc pre-trained in BLIP-2 [14]. To compute ITM, we first
generate the textual description of the source motion with
visual question answering and then compute the ITM score
between the source textual description, denoted as text, and
the rendered retargeted motion, denoted as image.

ITM = Fc(text, image) (14)

Fréchet inception distance (FID) is calculated between
the semantic embedding distribution of retargeted motion
and source motion. Let N (µs,Σs) denotes the source dis-
tribution, while N (µt,Σt) denotes the target distribution.
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C. Implementation Details

Training details. We use four NVIDIA 3090Ti (24*4GB)
and the trainning process is divided into two stages. For
skeleton-aware pre-training, the learning rate is set as
0.0003, the number of training epoch is set as 80 and the
batch size is 16. For semantics fine-tuning, the learning rate
is set to 0.0001 and batch size is 4. After 25 epoches, our
model achieves state-of-the-art performance in motion re-
targeting and preserves the semantics of motion well. When
fine-tuning our model with the interpenetration loss and
the semantics consistency loss, we increase the weight of
the interpenetration loss from 1.0 to 10.0 during the first 5
epochs. Because we observe that the performance of the
vision-language model is unstable when there exists obvi-
ous interpenetration. And after 5 epoch, the weight goes
back to 1.0. The initial hyper-parameters λr, λc, λa, λj , λp,
λs for pre-training and fine-tuning loss functions are set to
10.0, 1.0, 0.1, 1.0, 1.0, 0.1. The vision language model we
used is BLIP-2 [14] with pre-trained FlanT5-XXL [5] large
language model and large scale pre-trained vision trans-
former. In order to generate more comprehensive text for
our prompt, we use beam search with a beam width of 5.
We also set the length-penalty to 1 which encourages longer
answers.
Network architecture. The motion encoder and decoder
architectures consist of three layers of graph convolutions.
The first two layers utilize spatial graph convolution, adopt-
ing a message-passing scheme to aggregate features from



Method MSE ↓ MSElc ↓ Pen.% ↓ ITM ↑ FMD↓ SCL ↓
SMTfwi 5.418 4.576 4.41 0.552 78.46 18.96
SMTfwq 0.739 0.517 4.56 0.658 2.497 0.191
SMTOurs 0.284 0.229 3.50 0.680 0.436 0.143

Table 4. Ablation study on semantic embedding. We compare
the performance of the model fine-tuned with the image feature
from CLIP [22] as semantic embedding (SMTfwi), the model fine-
tuned with the features of the querying transformer as semantic
embedding (SMTfwq) and the model fine-tuned with the features
of the larage language model encoder (SMTOurs)

Figure 8. The cross attention map between question and image
to generate semantic embedding, the first row is question without
prompt and second row is question with prompt. Trough guiding
visual question answering, the semantic embedding concentrate on
the localized regions which preserve motion semantics.

neighboring nodes as Eq. 16. The last layer is the tempo-
ral graph convolution, which maintains the same number
of channels. The motion encoder receives joint rotations
and positions as input and encodes them into latent motion
embeddings, expanding the channels from 9 to 16 and 32.
Subsequently, the motion decoder takes these latent motion
embeddings as input and outputs the target joint rotations,
gradually reducing the channels from 32 to 16 and 6. Addi-
tionally, the root joint positions are generated using a two-
layer MLP, starting with node features from the root joint
and expanding channels to 16 and 3.

xi
′
= xi +

∑
j∈N(i)

g(W f [xi,xj , ej,i] + bf ) (16)

where xi is the feature of node i, xi
′

is the updated fea-
ture of node i, N(i) is the set of neighbor nodes of node i,
and ej,i is the edge feature from node j to node i, g is the
LeakyReLU function, W f and bf are learnable parameters.

D. Semantic Attention Visualization

To gain insights into the preservation of motion semantics,
we visualize the attention map between the question and

Figure 9. The qualitative comparison between the network fine-
tuned without semantics (FWP), the network fine-tuned with the
output of querying transformer (FWQ), the network fine-tuned
with the output of image encoder (FWI), the network fine-tuned
with the output of large language model encoder (Ours).

Figure 10. When the motion does not have obvious semantics, the
text description can be the same while the semantic embedding
from language encoder preserves the difference.

image. In Fig. 8, we illustrate how the semantic embedding
accurately captures motion semantics in localized regions.
This also clarifies the slight changes in the other joints of the
character’s skeleton with and without semantic consistency.

E. Ablation Study

Latent semantic embedding. We validate features from
different levels: the output of the image encoder, the out-
put of the querying transformer, the output of the large lan-
guage model encoder. We visualize the features of three
motions including Waving, Pointing and Salute with three
source characters, including Y Bot, X Bot, Ortiz, using T-
SNE [25] dimensionality reduction technique. The Fig. 11
shows that the features of the image encoder are clustered
around characters rather than motions which indicates that
the features contains more information on the appearance
of the characters, while the features of the large language
model encoder are clustered around motions and contains
mainly motion semantics. We further use these features as
semantic embedding to fine-tune our model and compute
evaluation metrics in Tab. 4. The metrics and qualitative
comparison indicates that appearance of character may lead
to meaningless gradient for the model resulting in unnatu-
ral retargeted motion. Moreover, compared with the image
features from CLIP, the features of the querying transformer
and the large language model encoder focus more on rele-
vant semantics with the help of guiding questions.Further
more, We visualize the semantic embeddings outputed by
VLM in Figure 12. The visualization indicates that VLM
has captured rich motion semantics information, regardless



Figure 11. Features extracted from the image encoder, the query-
ing transformer and the encoder of the large language model visu-
alized by T-SNE [25].

Figure 12. Visualization of semantic embedding space by t-
SNE[25]. We visualize 9 motions of 8 characters with 72 se-
quences in total. The left figure demonstrates that frames of the
same motion category are clustered. The right one shows that dif-
ferent characters in a single motion category are not clustered by
characters.

of the appearance of the character, and is capable of guiding
motion semantics preservation.

We also validate the possibility of using text descriptions
as semantic embedding. But the text description of motion
semantics is fuzzy and sparse. The Fig. 10 shows that dur-
ing the transition phase of an action, the text descriptions
remain the same. Comparing with text description, the la-
tent features can provide dense supervision. Moreover, us-
ing text descriptions or output of decoder will bring more
computation cost and higher non-linearity.
Comparison with video semantics. We compare the tex-
tual descriptions obtained from images and videos of mo-
tion sequences. The video-based vision-language model
used for evaluation is SwinBert [17]. The Fig. 15 shows that
although the video-based vision-language model can cap-
ture temporal information, the captured semantics is vague
and lack details. The image-based vision-language model
could generate more detailed and comprehensive descrip-
tions and provide stronger supervision. Moreover, seman-
tics of similar motions could be shared cross different mo-
tion sequence, which reduce the size of the fine-tuning set.
Performance of different numbers of views. We have
conducted a new ablation in Table 5. The performance de-

Number of Views MSE ↓ MSElc ↓ Pen.% ↓ ITM ↑ FID ↓ SCL ↓
1(front) 0.262 0.186 3.51 0.630 5.715 0.499

2(left right diagonal) 0.274 0.195 3.49 0.651 2.849 0.277
3(front,left,right) 0.284 0.229 3.50 0.680 0.436 0.143

5(2+3) 0.286 0.233 3.50 0.681 0.433 0.141

Table 5. Quantitative comparison of different numbers of views.

Method MSE ↓ MSElc ↓ Pen.% ↓ ITM ↑ FID ↓ SCL ↓
NKN [26] 0.326 0.231 8.71 0.575 27.79 1.414
NKN [26] + VLM 0.392 0.308 4.44 0.665 2.687 0.223
SAN [2] 0.435 0.255 9.74 0.561 28.33 1.448
SAN [2] + VLM 0.481 0.339 5.08 0.659 2.798 0.258

Table 6. Quantitative comparison of different backbone networks.

Figure 13. Example of the joint angle trajectory for the pitch and
roll of the right arm.

creases to some extent with a single view due to depth in-
formation loss. Three perspectives, including the front, left
and right view, can achieve fairly good results. Adding ad-
ditional viewpoints after the third improves the outcome,
but at a slower rate.
Ablation study of skeleton network. We have conducted
a new ablation experiment in Table 6. The results show
that the semantic module is applicable for different back-
bones and improves motion semantics preservation. The
MSE metric has increased because the ground truth data in
Mixamo dataset are not clean and suffer from interpenetra-
tion issues and semantic information loss [27].

F. Additional Results

More cases. We provide additional cases to validate the ef-
fectiveness of the proposed method in the task of semantics-
aware motion retargeting. Fig. 16 displays a gallery of retar-
geted results alongside their corresponding textual descrip-
tions. Moreover, Fig. 17, Fig. 18, Fig. 19, and Fig. 20
present the retargeted motions of “Clapping”, “Crazy”,
“React”, and “Fireball” from the source character to three
different target characters. These qualitative results demon-
strate that our method is able to produce high-quality mo-
tion retargeting results while preserving motion semantics.
Retargeting motion from Internet videos. We also con-
duct experiments on motion retargeting from wild videos
on the Internet in Fig. 21. The human pose is estimated
using the approach proposed in [20]. Then we perform mo-
tion retargeting from the human pose to Mixamo characters.



Image Captioning
A 3d model of a boy wearing 
glasses and a hat.

Visual Question Answering
Q：What is the character doing?
A：The character is praying.

Guiding Visual Question Answering
Q：Where are the hands of the character?
A： In front of his head.
Q：What is the character doing?
A：The character is praying and holding 
his hand in front of him.

Image Captioning
A 3d model of a robot running on a 
checkered floor.

Visual Question Answering
Q：What is the character doing?
A：The character is running on a 
checkered floor.

Guiding Visual Question Answering
Q：Where are the hands of the character?
A：Holding a ball.
Q：What is the character doing?
A：The character is trying to throw a ball 
with both hands on the right side of his 
body.

Figure 14. Text descriptions generated by different ways. The guiding visual question answering yields more comprehensive results.

Figure 15. Text descriptions generated by the image language model and video language model. Green row is generated by image-based
vision-language model. Blue row is the result of video-based vision-language model.

Considering the inherent errors in the human pose estima-
tion, we extract the semantic embedding from the original
video and apply the semantics consistency loss to further
optimize the joint angles. We compare the results with and
without optimization to validate the effectiveness of the se-
mantics consistency loss. Despite the presence of some er-
rors in human pose estimation, the retargeted motion accu-
rately preserves the motion characteristics of the movement

in the original video.
Smoothness. We perform experiments to evaluate the
smoothness of the retargeted motions. As an example, we
visualize the joint angle trajectory for the pitch and roll of
the right arm, and compare it with state-of-the-art methods.
The Fig. 13 illustrates that our method delivers smoother
motion compared to R2ET [29].



Index Motion name Search query Source character Length Usage

1 Agreeing Step Back Cautiously Agreeing Y Bot 142 Test
2 Angry Standing Angrily Y Bot 576 Finetune
3 Baseball Hit Baseball Base Hit X Bot 118 Test
4 Baseball Pitching Pitching A Baseball Y Bot 119 Test
5 Cards Dealing Cards X Bot 274 Finetune
6 Charge Point Onward Charge Y Bot 172 Test
7 Clapping Clap While Standing Y Bot 36 Test
8 Counting Counting To Five On One Hand Y Bot 200 Test
9 Crying Crying And Rubbing Eyes X Bot 189 Test
10 Crazy Gesture Crazy Hand Gesture X Bot 151 Test
11 Defeat Covering Face In Shame After Defeat Y Bot 220 Finetune
12 Dismissing Gesture Dismissing With Hand Forward Y Bot 99 Test
13 Excited Super Excited X Bot 198 Finetune
14 Fireball Street Fighter Hadouken Y Bot 102 Test
15 Fist Pump Pymping A Fist Y Bot 115 Finetune
16 Focus Shake Off Head Pain And Focus X Bot 166 Finetune
17 Guitar Playing Playing A Guitar Y Bot 144 Test
18 Happy Standing Happily X Bot 301 Test
19 Hands Forward Gesture Two Handed Forward Gesture Ortiz 94 Test
20 Hand Raising Raising A Hand X Bot 123 Test
21 Insult Insulting With Rude Gesture X Bot 81 Test
22 Lead Jab Long Body Jab Y Bot 56 Test
23 Looking Looking Off Into The Distance Y Bot 241 Test
24 Loser Showing Loser Gesture While Standing Ortiz 99 Test
25 No Indicating No X Bot 151 Test
26 Padding Padding A Single Oar Canoe Y Bot 218 Finetune
27 Plotting Evil Plotting X Bot 100 Test
28 Pointing Pointing While Seated Ortiz 104 Test
29 Praying Buckled Stand And Praying Y Bot 36 Test
30 Reacting Being Surprised And Looking Right Oritz 111 Test
31 Salute Formal Military Salute X Bot 86 Test
32 Shaking Hands 2 2 People Shaking Hands Part 2 - Male Y Bot 132 Test
33 Smoking Idle Smoking Y Bot 538 Test
34 Standing Greeting Greeting While Standing Ortiz 154 Test
35 Thankful Being Thankful While Standing X Bot 91 Test
36 Taunt Taunting Pointing At Wrist X Bot 86 Test
37 Taunt Gesture Taunt Gesture Ortiz 60 Finetune
38 Talking Asking A Question X Bot 156 Finetune
39 Talking Male Talking On The Cell Phone Y Bot 145 Finetune
40 Telling A Secret Telling A Secret Ortiz 328 Finetune
41 Victory Celebrating After A Win While Seated Ortiz 184 Finetune
42 Waving Waving With Both Hands Ortiz 96 Finetune
43 Whatever Gesture Whatever Gesture Ortiz 46 Test
44 Yawn Big Yawn While Standing X Bot 251 Finetune
45 Yelling Yelling In Anger Ortiz 236 Finetune

Table 7. 45 source motion sequences of 3 characters for testing and fine-tuning.



Figure 16. Snapshots of motions retargeted from the source character to three different characters and corresponding textual descriptions.



Figure 17. Snapshots of motion sequence “Clapping” retargeted from the source character to three different characters.

Figure 18. Snapshots of motion sequence “Crazy” retargeted from the source character to three different characters.



Figure 19. Snapshots of motion sequence “React” retargeted from the source character to three different characters.

Figure 20. Snapshots of motion sequence “Fireball” retargeted from the source character to three different characters.



Figure 21. Snapshots of motions retargeted from the wild video on the Internet to three different characters with and without optimization.
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