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A. Derivation of Equation 5

The objective in Equation 4 is to minimize the Mean

Squared Error (MSE) between Gy € RN and Qtys €
RlXN,

T
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Assuming we have a complete [N-dimension orthonormal
basis,
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where 6y, is the kronecker delta and n,m = 1,2,--- N.
Given that any vector can be represented as a linear combi-
nation of the basis vectors,
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According to the property of orthonormal basis, we have,
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Our goal is to find an M -dimension representation G s,
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The second term indicates bias. With Equation 17 and
Equation 18, we can calculate the difference between G, y

and G g,
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After substituting Equation 19 in Equation 14, we have
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Taking derivative w.r.t oy, and b,, and setting to zero, we
have,
=T
by = Goy - W, @1

where Gy = % Zle G v. Thus, Equation 20 can be re-
formed as
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Minimizing J is equivalent to reducing the variance of the
pruned samples. Consequently, the goal outlined in Equa-
tion 4 effectively becomes maximizing the variance of core-
set shown in Equation 5.
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B. Comparision Methods

Random randomly selects partial data from the full dataset
to form a coreset.

Entropy [8] is a metric of sample uncertainty. Samples with
higher entropy are considered to have a greater impact on
model optimization. The entropy is calculated with the pre-
dicted probabilities at the end of training.

Forgetting [44] counts how many times the forgetting hap-
pens during the training. The unforgettable samples can be
removed with minimal performance drop.

EL2N [32] selects samples with larger gradient magnitudes
which can be approximated by error vector scores. Only
the first 10-epoch error vector scores are averaged to evalu-
ate samples.

AUM [34] selects samples with the highest area under the
margin, which measures the probability gap between the
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Figure 7. Parameter analysis of range 7" and window size K on CIFAR-10 with ResNet-18. From left to right, the corresponding pruning

rates are 0.3, 0.5, 0.7, 0.8, and 0.9.

Table 6. Accuracy results on CIFAR-10 and 100 with smaller batch size. With a smaller batch size, all compared methods are enhanced

under aggressive pruning, while our superiority remains consistent.

CIFAR-10 CIFAR-100
p 80% 90% 80% 90%

batch size 128 64 128 32 128 64 128 32
Random 86.92 88.87 76.71 83.77 56.19 57.79 34.88 46.68
Entropy [§] 80.77 83 49 63 65 72‘7 gg 38.55 42 86 24.09 29.56
Forgetting [44] 61.94 76 18 38 95 45.87 38.11 38 42 19.88 25 82
ELON [32] 59.28 678; gz} 23 54 371‘ 89 174 67 177” 31 5.54 g 10
AUM [34] 59.11 69.60 30.62 34.74 16.8: 3 18.43 7.99 9. 29
Moderate [47] 86.45 87.76 76 11 83{767311 54. 22 56 52 30.50 41\.5\;\2
Dyn-Une [15] 73.28 79 76 31 99 37.12 36 21 39 19 11.68 15.20
89.82 91.30 77.96 85.46 59.56 63.01 51.32 54.51
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target class and the next largest class across all training
epochs. A larger AUM suggests higher importance.
Moderate [47] calculates sample-wise distance in feature
space. Samples near the median are considered more im-
portant. Here, the features are generated by a pretrained
model.

CCS [52] uses a variation of stratified sampling across
importance scores to improve the coverage of coreset,
which can be combined with other criteria. In our exper-
iments, AUM [34] is used as the importance measurement
in CCS [52].

Dyn-Unc [15] calculates the dynamic uncertainty defined
as the variance of target class predicted probabilities during
the training progress. The samples with larger uncertainties
are more important than those with smaller uncertainties.
Note that, we use the same experimental hyperparameter
settings to ensure equity for all the compared methods.

C. Parameter Settings

The grid search of CIFAR-10 is shown in Figure 7.
The optimal (p, T, K) setting is (0.3, 70, 10), (0.5, 90, 10),
(0.7,80,10), (0.8,30,10), and (0.9, 10, 5). For ImageNet-



Table 7. Cross-architecture generalization performance on CIFAR-10 with ResNet-18.

ResNet-50 VGG-16 MobileNet-v2 ShuffleNet
P 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
Random 94.33 93.40 90.94 92.93 91.52 88.55 91.83 91.69 89.66 90.86 89.08 85.87
Entropy [8] 94.44 92.11 85.67 93.20 90.05 85.42 91.69 86.29 89.92 90.46 87.56 82.03
Forgetting [44]  95.36 95.29 90.56 94.03 93.71 90.14 93.29 93.54 91.11 92.08 90.69 80.37
EL2N [32] 95.44 94.61 87.48 93.86 93.19 87.23 92.96 92.99 88.38 92.12 90.73 79.63
AUM [34] 95.07 95.26 91.36 94.14 93.73 88.44 93.43 93.37 90.97 92.23 91.72 79.41
Moderate [47]  93.86 92.58 90.56 92.57 90.80 87.94 91.86 90.82 89.06 90.03 89.05 84.66
Dyn-Unc [15]  94.80 94.21 87.28 92.98 92.1 86.99 92.16 92.08 89.93 90.29 88.80 80.70
CCS [52] 95.40 95.04 93.00 94.01 93.34 91.18 93.30 93.15 91.88 91.61 90.84 88.38
TDDS 95.50 95.66 93.92 94.45 93.74 91.34 94.52 94.05 92.31 92.79 92.07 88.96
Table 8. Cross-architecture generalization performance on CIFAR-100 with ResNet-18.
ResNet-50 VGG-16 MobileNet-v2 ShuffleNet

p 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
Random 72.09 68.27 61.75 71.75 67.57 61.03 70.27 67.76 63.02 68.31 65.17 58.29
Entropy [8] 73.09 63.12 47.61 69.52 61.16 48.42 67.91 61.69 51.74 64.12 56.28 44.68
Forgetting [44]  78.17 70.60 48.74 73.29 66.01 47.85 72.37 68.05 54.06 66.94 60.64 40.65
EL2N [32] 76.27 65.83 23.35 72.42 63.07 36.47 71.96 63.81 42.47 69.21 56.82 29.22
AUM [34] 77.38 64.2 32.36 73.60 62.01 30.88 72.29 64.33 36.35 66.98 54.31 29.24
Moderate [47]  72.67 68.75 57.61 70.1 65.56 57.80 70.01 67.03 60.78 66.53 62.53 50.33
Dyn-Unc [15]  73.00 63.7 46.26 68.48 61.27 47.24 68.01 62.04 49.40 64.57 56.14 42.35
CCS [52] 76.96 72.43 64.74 74.02 70.14 64.40 73.04 70.63 66.31 69.80 66.71 61.31
TDDS 79.53 76.24 66.56 74.23 70.66 64.08 74.23 71.14 66.36 70.14 67.14 61.07

1K with ResNet-34, we set (0.3,20,10), (0.5,20,10),
and (0.7,30,20). For ImageNet-1K with Swin-T, we
set (0.25,200,10), (0.3,180,10), (0.4,150,10), and
(0.5, 100, 10).

D. Small Batch Size Boosts Aggressive Pruning

In the experiments, we reveal that smaller batch size boosts
coreset training, especially under aggressive pruning rates.
This phenomenon is attributed to so-called Generalization
Gap [18], which suggests that when the available data is
extremely scare, smaller batch size can prevent overfitting
by allowing more random explorations in the optimization
space before converging to an optimal minimum. As re-
ported in Table 6, smaller batch size improves the accuracy
of high pruning rates for all the compared methods. Note
that, regardless of the batch size, our method consistently
demonstrates a significant advantage.

E. Generalization Across Architectures

We conduct cross-architecture experiments to examine
whether coresets perform well when being selected on one
architecture and then tested on other architectures. Four
representative architectures including ResNet-50, VGG-16,
MobileNet-v2, and ShuffleNet are used to assess the cross-
architecture generlization. Table 7 lists the results on
CIFAR-10, while Table 8 reports the results on CIFAR-100.
We can see the coresets constructed by the proposed TDDS
achieves stably good testing results, regardless of which
model architecture is used to test. Experiments on CIFAR-
100 are reported in Supplementary.

F. Robustness to Complex Realistic Scenarios

We also investigate the robustness of corsets in complex
and realistic scenarios, including image corruption and la-
bel noise. Following the settings stated in [47], we con-
sider five types of realistic noise, namely Gaussian noise,



Origin Gaussian Occlusion Resolution Blur

Figure 8. Illustration of the different types of noise used for image corruption. Here we consider Gaussian noise, random occlusion,
resolution, fog, and motion blur.

Table 9. Robustness to image corruption on CIFAR-100 with ResNet-18. 20% training images are corrupted. The model trained with the
full dataset achieves 75.30% accuracy.

Image Corruption

P 30% 50% 70% 80% 90%

Random [ty e iy ey g
Entropy [£] iy o e ey Py
Forgetting [44] 44 e Py o oy
EL2N [32] 7008 il AT S S
AUM [34] i 100 1589 o oy
Moderate [47] s o702 o5 s iz
Dyn-Unc [15] or oy a2 ey sy
CCs 152 S il ek o e
TDDS ey fex e 0P 9P

random occlusion, resolution, fog, and motion blur (shown
in Figure 8). Here, the ratio for each type of corruption is
4%, resulting in a total 20% of training images being cor-
rupted. Besides, we also consider label noise by replacing
the original label with labels from other classes. The misla-
bel ratio is also set to 20%. The results reported in Table 9
and Table 10 verify the robustness of our proposed TDDS
in complex and realistic scenarios.



Table 10. Robustness to label noise on CIFAR-100 with ResNet-18. 20% training samples are mislabeled
dataset achieves 65.48% accuracy.

. The model trained with the full

Lable Noise
» 30% 50% 70% 80% 90%

Random 6217 953 108 34l 2274
Entropy [8] 60.01 s.2T 42.75 35.18 2434
Forgetting [44] p8.75 4790 29.34 21.38 13.31
EL2N [32] 63.76 50-39 20.89 10-20 597
AUM [34] 50.49 22.86 579 2:31 125
Moderate [47] 61.58 5723 49.28 43.25 32,07
Dyn-Unc [15] 52.99 38.83 19.17 341 Lod
CCS [52] 53.38 4059 25-30 20.49 14
TDDS 65,15 62,72 54.97 5014 39,32
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