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Figure 1. Benchmarking video restoration models for turbulence
mitigation on our ATSyn-dynamic dataset. The circles in orange
are other video-based TM networks, and the circles in blue are
representative video deblurring and general restoration networks.
GMACs are evaluated on 540× 960 images.

1. Additional Experiments
1.1. DATUM-s

To further substantiate the efficacy of DATUM’s design, we
introduced a scaled-down variant, DATUM-s. The perfor-
mance of DATUM-s is demonstrated in Fig. 1 and Table 1.
Although DATUM-s retains the fundamental architecture of
DATUM, it operates with only half the number of channels.
This reduction assesses the model’s performance under con-
strained computational resources, offering insights into its
scalability and efficiency.

1.2. Visualization of flow refinement in DAAB

The Deformable Attention Alignment Block (DAAB) is de-
signed to align features from a current time frame, denoted
as time t, with reference features from a preceding frame,
time t − 1, during forward temporal propagation. This ap-
proach differs fundamentally from traditional optical flow
methods, which align two degraded frames between times t
and t−1 by Of

t→t−1. DAAB instead aligns the feature map
of the current frame t with a potentially tilt-corrected refer-
ence feature from the previous frame t − 1. The effective-
ness of DAAB has been substantiated in previous ablation
studies.

To further illustrate its efficacy, we provide an additional
visualization in Fig. 2, leading to several critical observa-
tions:

1. The original flow estimation Of
t→t−1 captures mild mo-

tion, such as that of a person, but introduces noise due to
random pixel displacements in static image regions.

2. The refined flow that registers ft to rt−1 is more depen-
dent on the structural information and less sensitive to
the mild motion.

3. The magnitude of the refined flow under DAAB exhibits
a pattern indicative of tilt rectification.

4. Additional visualization of the estimated reverse tilt field
−̂1
t , which adjusts frame t to a tilt-free state, demon-
strates that Of→r

t aligns more closely with −̂1
t . This

alignment is in line with the intended design of DAAB
for effective feature-reference registration.

1.3. More qualitative comparisons on real-world
image sequences

ATNet [10] on the static scene data. In Fig. 6, we show
the restoration results of NDIR [8] rather than the ATNet
[10]. NDIR is an unsupervised multi-frame pixel align-
ment network without a deblurring function, while ATNet
is a single-frame-based general TM network. However,
ATNet’s inference is not successful. The results on some
static scene data are shown in Fig. 3, which suggests it is
challenging for this single-frame-based model to deal with
medium to strong turbulence, while our methods can handle
much wider turbulence conditions.

Compare with TSRWGAN [7] We address the gener-
alization facilitated by our data synthesis method. A qual-
itative comparison was made between the original TSRW-
GAN [7] and our fine-tuned version on [7]’s real-world dy-
namic scenes along with a cross-dataset evaluation between
these two versions on [1]’s real-world dynamic scenes. The
result is shown in Figure 4. The original model shows a
limit in generalization when adapting to a different dataset,
but our fine-tuned version is more generalizable due to AT-
syn’s wide range of turbulent conditions. The original TSR-
WGAN model is trained from the simulator from [12] and
physical simulation by heating the air along a relatively
short path. Their numerical simulator can generate physics-
based tilt and spatially varying blur, but higher-order aber-
rations are not modeled. Their physical simulator tends to
generate spatially highly correlated distortion but a weak
blurry effect. Because of these limitations in their genera-
tion, their generalization to other datasets suffers as a result.
Compare with Complex-CNN [1] A complex-valued con-
volutional neural network (CNN) [1] was proposed to re-
move turbulence-related degradation from videos. Their
synthetic training data comes from a simulator that mod-
els the tilt and blur via a low-order approximation, with the



Turbulence Level Weak Medium Strong Overall Cost
Methods PSNR SSIMCW PSNR SSIMCW PSNR SSIMCW PSNR SSIMCW Size FPS
DATUM-s [ours] 29.5958 0.8809 28.9869 0.8762 27.5456 0.8550 28.7743 0.8714 2.538 22.48
DATUM [ours] 30.2058 0.8857 29.6203 0.8829 28.2550 0.8640 29.4222 0.8781 5.754 9.17

Table 1. Performance comparison on the ATSyn-dynamic set, we list the image quality scores on different turbulence levels and frame-wise
resource consumption (measured with 960×540 frame sequences on RTX 2080 Ti).

(a) input frame t (b) input frame t− 1 (c) restored frame t by DATUM

(d) optical flow from t to t− 1 Of
t→t−1 (e) refined feature to reference flow Of→r

t
(f) estimated inverse tilt field −̂1

t

Figure 2. Visualization of the flow refinement for feature-reference registration in DAAB. (d), (e) and (f) show the magnitude of the
associated deformation field. We ignore the directional information because it is relatively random. Note both (d) and (e) are measured in
1/4 resolution, while (f) is in full resolution, which aims to register shallow features extracted from (a) those from (c).

(a) Text image input (b) Restored by ATNet(c) Restored by DA-
TUM

(d) OTIS input (e) Restored by ATNet (f) Restored by DA-
TUM

Figure 3. Cases of ATNet [10] restoration on real-world static
scene images. The text image is the 49th frame of the 94th se-
quence in [14], and the OTIS image is the 24th frame of the pattern
13 from the [6] dataset.

blur kernel being sampled from 9 given point spread func-
tions. Without access to their trained model, we cannot fine-

tune. However, with some results available, we may com-
pare the performance of our restored videos with theirs on
their dataset. We provide this comparison in Figure 5.

1.4. Image quality metrics for turbulence mitigation

In our empirical study, we observed a high correlation be-
tween two commonly used metrics: Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure
(SSIM). Atmospheric turbulence typically induces blur and
pixel displacement in images. While the blurring effect is
readily noticeable in both human and computer vision ap-
plications, minor pixel displacements often remain less per-
ceptible. However, PSNR and SSIM are particularly sensi-
tive to pixel displacements. This sensitivity raises the need
for additional metrics to enable a more comprehensive per-
formance evaluation. We investigate the Complex-wavelet
SSIM (CW-SSIM), a variant of SSIM that is less sensitive to
mild pixel displacement, and the Learned Perceptual Image
Patch Similarity (LPIPS) for this purpose.

With the turbulence simulator detailed in the section 2,
we can synthesize different levels of atmospheric turbu-
lence. For the Zernike-based simulator, the turbulence ef-
fect can be quantified by the magnitude of Zernike coef-
ficients, which indicate the properties of phase distortion



(a) input (b) Original TSRWGAN [7] (c) Fine-tuned TSRWGAN

Figure 4. Compare the TSRWGAN [7] trained on the original dataset and our dataset, the first two rows are real-world samples from [7]’s
dataset, and the bottom row is from [1]’s real-world videos. In column (c), we present the fine-tuned TSRWGAN on our ATSyn-dynamic
dataset. From the comparison, it’s easy to conclude that our ATSyn dataset helps the previous turbulence mitigation network generalize
better on their own testing videos and other samples.

(a) input (b) Restored by Complex-CNN [1] (c) Restored by DATUM

Figure 5. Comparison with [1] on their real-world dataset, zoom in for a better view.

caused by anisoplanatic turbulence. We compute different
image quality scores for each pair of degraded and clean im-
ages. To assure the robustness of our analysis, we randomly
chose 1000 images from the Places dataset [17] as clean
images and simulated nine degraded samples for each, so

we draw 9000 samples in total and show the relationship
between the strength of turbulence degradation and image
quality metrics in Fig. 6. Note we separate the tilt and blur
effects, although they are highly correlated. The score of
tilt is the average magnitude of pixel displacement on an



Figure 6. Image quality metrics. The x-axis is the score of blur or tilt; y-axis is the image quality score measuring the degradation with
respect to the clean image. We measured PSNR, SSIM, LPIPS, CW-SSIM, and the Charbonnier score, which serves as the loss of our
optimization for turbulence mitigation.

image, and the score of blur is calculated by

blur = kb

∑
x(
√∑

i=3:36 a
2
x,i)

HW
,

where x = (x, y) is the pixel coordinate on each image,
H , W are the height and width of the image, and kb is the
scaling factor determined by the relative size of blur kernels.

From Fig. 6, we can find the SSIM is less sensitive to
turbulence degradation than the others, and CW-SSIM is
more sensitive than LPIPS. Thus, we selected PSNR and
CW-SSIM as our restoration quality estimators.

2. Zernike-based Turbulence Simulator
2.1. General Theory

We adopt the model of the atmospheric degradations to be
exclusively phase distortions, which can be represented via
the Zernike polynomials {Zi} as a basis, with coefficients
ax,i [4, 11]. We set i ∈ {1, 2, 3, · · · , 36} with Z{2,3} in-
fluencing the pixel displacement T and higher order coef-
ficients Z{i≥4} forming the blurry effect B in the image
plane. With this, the kernel of Bx can be written as:

Bx ≈

∣∣∣∣∣F
{

exp

(
−j

36∑
i=4

ax,iZi

)}∣∣∣∣∣
2

, (1)

where F denotes the Fourier transform. Adopting the wide
sense stationary model for the Zernike coefficients [4, 5],
one can generate ax,i in parallel by Fourier Transform. It
is worth noting ax,{2,3} can be excluded here as they con-
tribute the pixel-shifting T , and thus may be separated ac-
cording to [2].

Hence, the phase distortions caused by atmospheric tur-
bulence can be further described by a random vector ax =
[ax,1, ax,2, ax,3, . . .]

T at each pixel x in an image, which

forms a set of random fields [5]. As stated by Noll [11],
each vector is a 0-mean Gaussian vector with a specified
covariance matrix,

E[axaTx ] = R. (2)

Noll used the Zernike polynomials to describe the phase dis-
tortions resulting from a point source, resulting in the basis
representation:

ϕx(Rρ) =
∑
i

ax,iZi(ρ), (3)

where ρ is a vector defined over the unit circle, and R is the
radius of the imaging system’s aperture.

This concept has been generalized to include sepa-
rate positions x and x′, which form a covariance tensor
E[ax,iax′,j ]. [5] states that one may quickly generate the
turbulent distortions for an image of size H × W , within
suitable approximation, from these components in the fol-
lowing way:

1. For i ∈ {1, 2, . . . , 36}, compute the power spec-
tral density (PSD) Si for each covariance function
through the use of the Wiener–Khinchin theorem, Si =
F{E[ax,iax′,j ]}, where F denotes the Fourier trans-
form.

2. Generate 36 zero-mean unit variance random fields ac-
cording to the covariance function E[ax,iax′,j ]. This is
done according to FFT-based methods, which use a com-
plex white noise seed n to form a field vi in the follow-
ing way: vi = real(F−1{

√
Sin}).

3. Perform a Cholesky decomposition of the matrix de-
rived by Noll R = LLt, which in our case is of size
36 × 36. Denoting the concatenated fields as v =
[v1,v2, . . . ,v36]

T with dimensions 36×H×W , the final
output random fields may be generated as a′ = Lv.



4. Provide the Zernike coefficient fields a′ to the Phase-
to-Space transformation (P2S) to compute the PSF-basis
coefficients βx = P(a′x,{i≥4}).

5. Apply the image warping followed by the spatially vary-
ing blur by the P2S coefficients as described in the main
body of the paper.

For color images, the same process is carried out, with the
spatially varying convolution occurring in the same way for
all color channels in accordance with [9].

Although from a high level, the simulation process in
this work is identical to that of [5], there are some critical
differences:
1. The spatially varying convolution is modified to match

the image formation process more accurately. Though
this is detailed in the paper, we provide additional evi-
dence of the importance of this modification in a later
subsection of the supplementary document. This affects
step (5) of the simulation.

2. We use a reformulated expression E[ax,iax′,j ] according
to [3], which we detail in the next two subsections. This
reformulation leads to an exact solution rather than the
approximate solution of [4]. This primarily affects step
(1) of the simulation process.

3. We modify the P2S basis functions to be resizable ac-
cording to the camera and environmental constraints.
This is done through a larger PSF training dataset which
alleviates the aliasing from the previously generated set.
The new P2S bases can vary from a large PSF (size
200×200 or more) down to accurately modeling a delta
function. This affects steps (4) and (5) of the described
process.

2.2. Spatially varying convolution re-formulation

The physical meaning of a PSF is the way in which a point
spreads across the sensor plane, which we refer to as a scat-
tering process. However, previous implementations of the
P2S transform operate as a gathering process. If the PSF
is spatially invariant, the difference is trivial, equivalent to
the difference between correlation and convolution. In the
spatially varying case, the difference is no longer negligi-
ble. The gathering process of previous simulators [4, 5, 9]
can be written as

O ≈
100∑
k=1

βx,k [ψk ⊛ T (I)] + n. (4)

The scattering process is instead written as [15]:

O ≈
100∑
k=1

ψk ⊛ [βx,kT (I)] + n. (5)

While mathematically subtle, the difference is signifi-
cant. Under the gathering model, a single point source at

x0 (i.e. T (I) = δ(x − x0)) will have the corresponding
blur:

O ≈
100∑
k=1

ψk(x− x0)βx,k + n, (6)

whereas the scattering model (4) results in

O ≈
100∑
k=1

ψk(x− x0)βx0,k + n. (7)

We see (7) as a shifted basis representation, whereas (6) is
a shifted basis with weights varying across the area of the
PSF – a mismatch to the image formation process.

2.3. Varying C2
n path

While on the surface, the problem may seem solved as de-
scribed by the simulation overview. There exist some issues
both at the theoretical and practical levels. The later itera-
tions of the Zernike-based simulations [5, 9] seek to rectify
the practical limitations, though a key theoretical issue has
remained. This leads us to introduce the two key fundamen-
tal limitations of the multi-aperture simulation:
1. Approximate solution. Within [4], a Taylor series is

utilized to determine the correlation of the Zernike coef-
ficients. This results in the solution only being approxi-
mate, unable to match the theoretical curves exactly as
their approach utilizes a first-order Taylor approxima-
tion.

2. Restriction to constant C2
n-paths. Related to the Tay-

lor series is the inability to model any turbulence beyond
ground-to-ground. Furthermore, ground-to-ground situ-
ations exist for which there is a non-trivial error by the
approximation, along with the potential of heat sources
along the path of propagation, which would make a con-
stant turbulence strength assumption invalid.
These issues have been addressed by a recent analysis

[3]. While it is primarily the subject of the mentioned pa-
per, we feel it important to describe it to a sufficient level of
detail here, as it is a critical improvement to the simulation
quality which allows us greater accuracy in our simulations.
That being said, we do not anticipate the reader who is un-
familiar with the atmospheric turbulence literature to under-
stand the following set of equations. Therefore, we briefly
present the main results for completeness and then offer an
interpretation of the equations that do not require so much
background.

As a wave propagates through a turbulent path, the
strength of the turbulence, C2

n, may vary along the prop-
agation path. This motivates writing the strength as a func-
tion of propagation distance, C2

n(z). The new theoretical
Zernike correlation result [3] allows one to write the auto-
correlation of Zernike coefficients E[ax,iax′,j ] as a function



of this continuous C2
n-profile:

E = Ai,j

∫ L

0

(
L− z

L

)5/3

C2
n(z)fij (vs.(z), k0) dz (8)

where Ai,j = 0.00969k2214/3π2/3R5/3
√

(ni + 1)(nj + 1)
and L is the length of propagation. The fij expression is
provided by [13]: for a displacement s = (s, φ) written in
polar form, the expression in [13] is written as

fij(vs., k0) = (−1)(n
+−m+)/2Θ(1)(i, j)

×Im+,ni+1,nj+1(2s, 2πRk0)

+(−1)(n
++2mi+|m−|)/2Θ(2)(i, j)

×I|m−|,ni+1,nj+1(2s, 2πRk0), (9)

with functions

Ia,b,c(s, k0) =

∫
dx

Ja(sx)Jb(x)Jc(x)

x(x2 + k0)2
, (10)

along with angular functions

Θ(1)(i, j) =



(−1)j cos(m+φ) h(i, j) = 1

sin(m+φ) h(i, j) = 2√
2 cos(m+φ) h(i, j) = 3√
2 sin(m+φ) h(i, j) = 4

1 h(i, j) = 5

(11)

and,

Θ(2)(i, j) =



cos(m−φ) h(i, j) = 1

sin(m−φ) h(i, j) = 2

0 h(i, j) = 3

0 h(i, j) = 4

0 h(i, j) = 5

, (12)

contributing the angular terms and

n± = ni ± nj , (13)

m± = mi ±mj . (14)

Though the equations which (8) utilizes are indeed te-
dious to write and interpret, (8) itself can be understood in
a fairly straightforward manner. First, recall that C2

n(z) is
the strength of the turbulent fluctuations. Thus, the correla-
tion of the Zernike coefficients is a weighted summation of
the turbulent distortions. The term (L − z/L)5/3 says that
turbulence closer to the camera contributes higher strength
and longer correlation length than turbulence far away from
the camera. The term fij(·) is a result of using the Zernike
polynomials – therefore, it is simply a function that falls out
of the mathematical description of them. The inner term

vs.(z) is a function of geometry, which ensures neighbor-
ing points have a higher correlation than points that are far
apart. Finally, although k0 is not so straightforward to inter-
pret without proper background in the literature, it is related
to the size of the turbulent distortions (not strength, but their
geometric size).

We claim that (8) is a significant improvement over pre-
vious results of [4]. To demonstrate this difference, we use
an example as given in [3] to show that the general result (8)
contains the results of [4] as a special case. We offer some
additional interpretation here to aid in understanding.

For this example, the turbulence strength is defined to be
the following

C2
n(z) = LC2

nδ

(
z − L

2

)
. (15)

This means the turbulence is located at the halfway point of
propagation, the rest is free space. If we plug this C2

n(z)
function into (8), we achieve the same correlation function
as in [4]:

E[ax,iax′,j ; 1] = Ai,j

(
1

2

)5/3

LC2
nfij

(
(x− x′)

D
, k0

)
.

(16)
Interpreting this result means that previous Zernike-based
simulations were equivalent to “squeezing” all of the turbu-
lence into a single infinitesimally thin slice at the halfway
point. This explains the inaccuracy by [4] as to why they
cannot (i) exactly match theoretical predictions and (ii) be
extended to varying C2

n-profiles. Unknown to [4], their ap-
proximation is equivalent to approximating the integral of
(8) as a single Riemann summation term.

Our approach to simulation in this paper rests on the re-
sult of [3], which is exact. Furthermore, it does not increase
time in simulation, except for a small increase in precom-
putation, which has been suitably optimized. We note that
this precomputation happens once ever as long as k0 doesn’t
change (which is not too restrictive of an assumption).

To visualize the improvement in this correlation term by
the number of terms used to approximate the integral (8),
we present a visualization in Figure 7. This demonstrates
that (i) a few additional terms contribute a great deal to
the overall accuracy and (ii) an increase in terms decreases
the aliasing. The decrease in aliasing is because FFT-based
generation is utilized – any high-frequency content, which
is “blurred” out by additional terms, may be aliased if the
sample grid is not large enough spatially. (iii) Our experi-
ments demonstrate 10-100 phase points in evaluating (8) to
be sufficient, depending on the situation.

2.4. New P2S kernels

In an optical simulation, careful consideration of the various
sample spacings is critical for achieving high accuracy. Pre-
vious multi-aperture simulations have made some progress



1 C2
n segment (used by [16]) 10 C2

n segments

100 C2
n segments (ours) 10000 C2

n segments

Figure 7. An instance of E[ax,iax′,i] from (8) under different number of C2
n segments along the optical path. Here, we show the 2nd to

36th autocovariance functions in raster order, and brighter pixels indicate larger values. The associated parameter set is distance = 600m,
focal length = 500mm, F-number = 11, C2

n[z] = 5× 10−14m−2/3 for all z, image size = 128×128, scene width = 0.5m. From this figure,
we find that the additional precision becomes negligible when we use more than 100 segments. Hence we chose 100 segments for data
synthesis.

in this direction. However, their approach is limited in many
ways. The reason for this reduces to the fact that their ker-
nels ψi may not be easily resized. This hurts the accuracy
of the simulation by causing mismatches in sampling and
limits the model’s generalizability.

The P2S kernels implemented in this paper are (i) re-
sizable and (ii) chosen to match the sampling parameters
of the scene. The core solution is (i), with (ii) being an
important consequence of this correction. The main limi-
tation in the P2S bases is their initial size of 33×33. This
causes the bases too often to be aliased significantly upon
resizing. To address this issue, we have increased the res-
olution of the PSF dictionary, resulting in the basis func-
tions being of size 67× 67. Additionally, the dictionary
is 20× larger than [9], aiding in the eigenfunctions being
well-behaved. The dictionary is generated with turbulence

strength D/r0 = [0.1, 12], representing various turbulent
conditions. Through our testing, we have observed we can
match PSFs from a delta function up to the challenging
cases of 6 ≤ D/r0 ≤ 12.

With these modifications, we have observed no notable
aliasing when resizing the PSF basis functions. This allows
us to resize the bases to match the sampling specified in the
simulation parameters. This is done by a tuning step that
operates in the following way:

1. The basis is used to represent the diffraction kernel of-
fline. We can compute the full width at half maximum
(FWHM) in pixels for the basis Nd. This step is done
once and hard-coded into the simulation.

2. Given the specified image size and camera parameters,
the diffraction kernel FWHM can be computed in meters
and converted to pixels N0. This is done for every new



Modality Distance (m) Focal length (m) F-number Scene width (m) C2
n(10

−14 × m−2/3)

ATSyn-dynamic

[30, 100] [0.1, 0.3] {2.8, 4} [2, 4] [50, 300]
{2.8, 4, 5.6} [4, 20] [200, 1000]

[100, 200] [0.2, 0.5] {2.8, 4, 5.6} [2, 4] [5, 50]
{2.8, 4, 5.6} [4, 20] [20, 100]

[200, 400] [0.3, 0.5] {5.6, 8} [2, 6] [2, 30]
{4, 5.6, 8} [6, 20] [10, 40]

[400, 600] [0.4, 0.75] {8, 11} [3, 7] [1, 20]
{5.6, 8, 11} [7, 20] [10, 30]

[600, 800] [0.6, 0.8] {8, 11} [4, 8] [1, 15]
{8, 11} [8, 20] [2, 20]

[800, 1000] [0.8, 1] {11, 16} [4, 8] [0.5, 10]
{8, 11, 16} [8, 20] [1, 20]

ATSyn-static

[200, 400] [1, 2] {8, 11} [0.2, 0.5] [3, 7]
{5.6, 8, 11} [0.5, 1] [6, 30]

[400, 600] [1, 2.5] {8, 11, 16} [0.4, 0.8] [2, 6]
{5.6, 8, 11} [0.8, 1.5] [6, 30]

[600, 800] [1, 3] {11, 16} [0.5, 1.2] [2, 5]
{8, 11} [1.2, 2] [5, 30]

Table 2. Parameter range, where [a, b] means uniform sampling from continuous range (a, b), and {} indicates uniform sampling from the
discrete set, all rows were chosen with identical probability

Strength
Blur

kb ≤ 17
19 ≤ kb ≤ 29

kb ≥ 31
D/r0 < 2 2 ≤ D/r0 ≤ 8 D/r0 > 8

Weak d < 0.5 d < 0.2 -
Medium 0.5 ≤ d ≤ 1 0.2 ≤ d ≤ 0.4 d ≤ 0.2

Strong d > 1 d > 0.4 d > 0.2

Table 3. Turbulence strength criterion in ATSyn-dynamic, the value of kb is odd.

set of parameters.
3. The basis is resized by N0/Nd, making the FWHM of

the diffraction kernel coincide with the theoretically pre-
dicted value.

Through this process, we can correctly incorporate the sam-
pling of the imaging system and scene into the basis repre-
sentation. In addition, we optionally incorporate PSF basis
size scaling by D/r0. We have observed that this gives us
additional turbulence blur not captured in the above PSF re-
sizing scheme.

2.5. Temporal correlation

Real-world turbulence is temporally correlated because the
dynamics of the atmosphere is a continuous process. There-
fore, accurately simulating a video will require the degrada-
tion to be spatiotemporally correlated. We disentangled the
spatial and temporal correlation and injected temporal cor-
relation into the simulation process by correlating the initial
random seed in the simulation. We use an AR(1) process
to generate the initial seed at the first stage. This allows for
the random seed nt at time t, which is then used to form
the distortion and blur random fields, to be related to the

previous realization by

nt = αnt−1 +
√
1− α2ϵt (17)

The term α is the temporal correlation ratio and ϵt ∼
N (0, I).

3. ATSyn Dataset
The ATSyn dataset has two subsets: ATSyn-dynamic and
ATSyn-static. The objective of the static scene turbulence
mitigation task is to restore a single common ground truth
from a sequence of degraded frames, which has been ex-
tensively explored in classical turbulence mitigation liter-
ature. On the other hand, the dynamic scene turbulence
mitigation task aims to restore each video frame where
the object or scene is in motion, presenting a significantly
greater challenge for conventional methods. As stated in the
main paper, the ATSyn-dynamic contains 5447 groups of
turbulence-affected videos, the T -only videos and ground
truth videos. Among all 5447 groups, 4350 are for train-
ing, and 1097 are for validation. Frame-wise, we have
1816375 frame groups for training. We use the first 120
frames in each testing video during testing if the original
testing video has more than 120 frames. On the other hand,



the ATSyn-static subset contains 3000 groups of image se-
quences, each consisting of 50 turbulence-affected frames,
50 T -only frames, and a corresponding ground truth image.
Out of these 3000 groups, 2000 are designated for training,
while 1000 are set aside for validation. Thanks to the ef-
ficiency of our simulator, the entire synthesis process can
be completed within seven days using a single RTX 2080Ti
GPU or 42 hours using a single NVIDIA A100 GPU.

3.1. Parameter selection details

Using the simulation method in Section 1, we can syn-
thesize long-range atmospheric turbulence effects at vari-
ous physical and camera parameters. These parameters in-
clude distance, the field of view (FOV) represented by scene
width, turbulence profile indicator C2

n, focal length, and F-
number of the camera. The detailed parameter ranges are
shown in Table 2. When setting the parameters, we first
select the distance, FOV, focal length, and f-number with
parameters ranging from a standard camera and lens to an
astronomical telescope. We then choose the C2

n range to
set the turbulence effect to be neither too strong nor weak.
The temporal correlation was sampled from 0.2∼0.9 in the
ATSyn-static and 0.3∼0.95 in the ATSyn-dynamic.

3.2. Turbulence strength

We classify the turbulence strength into multiple levels to
study how turbulence mitigation networks perform under
different conditions. For the ATSyn-dynamic dataset, we
select three levels. Although our parameters are carefully
chosen, the relationship between turbulence strength and
parameters is highly nonlinear. We, therefore, determined
the turbulence strength based on the actual degradation of
the image. Turbulence degradation consists of the pixel dis-
placement and blur effect. The average pixel displacement
(denoted by d) can measure the former. The latter can be
indicated by the size of the blur kernel basis (denoted by
kb) and the turbulence strength D/r0. The size of the blur
kernel basis is related to, though not proportional to, D/r0;
the blur kernel size is also affected by the image resolu-
tion, distance, and field of view. It is possible that the same
blur kernel basis yields different blur effects under differ-
ent D/r0 or that the same D/r0 is associated with different
blur sizes because the resolution of the blur kernel varies.
Therefore, we need to consider both the size of the basis
and D/r0. The detailed classification criterion is listed in
Table 3.

We use 4500 clean input videos to generate the dataset,
partitioned into three groups with 1500 videos per partition.
For each video, we run the parameter generator in Section
3.1 to produce random turbulence parameters and synthe-
size a single sample frame. The turbulence strength can be
determined from this instance according to Table 3. We syn-
thesize the entire video if the associated turbulence strength

set is not full, or we abandon the set of parameters and ran-
domly produce another set and repeat the steps above until
the video is accepted by one turbulence strength set or all
videos are synthesized.
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