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Figure 1. Illustration of the spike generation principle.

1. Illustration of Spike Generating Process

The detailed spike-generating process of a spike camera is
presented in Fig. 1. The pixel array on a spike camera in-
dependently receives continuous photons. As shown in the
figure, the photon arriving velocity reflects the light inten-
sity. The voltage is always increased by the electrical cur-
rent converted from photons, and reset whenever reaching
the threshold. The back circuit reads out spike signals in the
very short interval τ .

2. Details of Network Structures

In the first stage, we adopt NAFNet [2] as the basic image
deblurring module M1. The overall network channels are
halved from 64 to 32.

In the second stage, the rough grayscale intensity L̃S is
inferred by the shallow convolutional module MS2I with
spike S as input. MS2I simply consists of 6 Conv2d layers
with the middle channel of 128. In the stage-2 model M2,
spike features FS = {Fh

S } and image features FL = {Fh
L},

where h ∈ [1, 2, ...,H] are obtained by the convolutional
feature extractors. H is set to 3. The first extractor consists
of a head Conv layer and a residual Conv block, while others
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Figure 2. Samples in the X4K1000FPS with unaligned spikes.

consist of two consecutive Conv layers. Feature channels in
stage 2 are 64.

In the third stage, each encoder and decoder is an
attention-base dense block (ADB) consisting of a channel
attention layer (CA) and a residual dense block (RDB).
There are 9 ADBs for encoding, 9 ADBs for decoding, and
1 ADB between the encoding and decoding modules. There
is a Conv layer for downsampling after the 3rd, 6th, and 9th
encoder. A RDB [7] contains 6 Conv layers and the growing
rate is 32.

3. Details of Datasets

To provide a clearer description of datasets, Fig. 2
presents visualizations of the spatiotemporally misaligned
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Figure 3. Samples in the REDS with unaligned spikes.

Method Input Data PSNR ↑ SSIM ↑
HINet [1] Image 31.10 0.902

NAFNet [2] Image 30.73 0.894
EFNet [4] Image+Spike 32.79 0.926
REFID [5] Image+Spike 33.63 0.926

UaSDN(Ours) Image+Spike 34.58 0.945
UaSDN-A(Ours) Image+Spike 35.55 0.955

Table 1. Comparison of various motion deblurring methods on
REDS [3] when spikes and images are precise aligned.

spikes generated using the X4K1000FPS dataset. In
X4K1000FPS, 66,120 samples are used for training, and
105 samples are used for testing. Fig. 3 presents visualiza-
tions of REDS datasets with spikes. In REDS with spikes,
23,520 samples are used for training, and 2940 samples are
used for testing. (Spikes are rendered with color in the fig-
ures for better visualization.)

4. Training Details

Models are trained with PyTorch on 2 NVIDIA GeForce
RTX 4090 with a batch size of 8. We use random cropping,
random flipping, and random rotation(90◦, 180◦, 270◦) as
data augmentations. The batch size is 256 × 256 and
128 × 128 for images and spikes, respectively. AdamW
is adopted as the optimizer with a learning rate of 1e-4 and
weight decay of 1e-4. We train all models for 100,000 it-
erations with the cosine scheduler. The lower bound of the
learning rate is set to 1e-6.

Method Input Data PSNR ↑ SSIM ↑
EDVR [6] Image 34.80 0.949

UaSDN(+EDVR) Image+Spike 36.80 0.966

Table 2. Comparison with the SOTA video-based method on
REDS [3].

RGB camera

Spike camera Not aligned on spatial axis;
No precise synchronization.

Figure 4. Illustration of the built simple spike-RGB camera system
for capturing real-world scenes.

5. Comparison Results on REDS under Precise
Alignment

In the ablation experiments of the manuscripts, we test the
performance advantages of our method when spikes and im-
ages are strictly aligned on the X4K1000FPS dataset. In this
section, we present the experimental results of the REDS
dataset. As shown in Tab. 1, compared to the other four
methods, our approach achieves a PSNR of 34.58dB and
an SSIM of 0.945. Compared to the retrained EFNet and
REFID methods with spikes as auxiliary information, our
method significantly improves by 1.70dB and 0.95dB.

In addition, we consider that when spikes and images
are aligned, our network structure can be simplified by re-
moving the modules specifically used for feature alignment
to lighten the network and focus on learning scene textures
from spikes. Specifically, we remove the first and second
stages of the model and eliminate the flow alignment part
of the third stage, resulting in a lightweight version named
UaSDN with Alignment (UaSDN-A). As shown in Tab. 1,
UaSDN-A achieves better results when aligned, specifically
a PSNR of 35.55dB and an SSIM of 0.955. The ablation re-
sult demonstrates that our method can achieve optimal per-
formance on motion deblurring whether the modalities are
aligned or not.

Discussion on comparison with video-based method
Currently, in image restoration tasks, state-of-the-art
(SOTA) methods often rely on using consecutive frames
in a video to provide more visual information as deblur-
ring clues. On the REDS dataset, one of the SOTA meth-
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Figure 5. Visualized results under the situation of the precise alignment. The comparison of our method (UaSDN) on X4K100FPS dataset
with four other methods: HINet, NAFNet, EFNet, and REFID.
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Figure 6. Visualized results on real-world data captured with an
RGB camera and a spike camera.

ods is EDVR [6], which uses a sequence of 5 consecutive
blurry frames as input. However, in practical applications
like driving scenarios, such methods are not feasible to have
access to images at time Ti+1, Ti+2, etc., when deblurring
the image Bi at time Ti. Therefore, methods relying on
multi-frame inputs are impractical in real-world scenarios.
Nevertheless, To demonstrate the effectiveness of our spike-
guided deblurring scheme, we replaced the first stage of the
proposed UaSDN with the EDVR network and trained the
complete UaSDN on REDS. The experimental results are
shown in Tab. 2. Compared to EDVR, out UaSDN improves
the performance of deblurring on REDS dataset and reaches
the PSNR of 36.78dB and the SSIM of 0.966. The signifi-
cant improvement in PSNR is 2.00 dB, which demonstrates
that our method can effectively utilize information in spikes
to assist motion deblurring.

6. Performance on Real World Spikes

To assess the deblurring capability of our method in real-
world scenarios, we set up a simple spike-RGB hybrid cam-
era system, as illustrated in Fig. 4. In the setup, no strict
spatial alignment is required between the spike camera and
the RGB camera, and precise synchronization in time is
not necessary, making the system easy to deploy. Fig. 6
presents more real-world test cases. The real-world test
demonstrated the generalization ability of our model.

K 1 2 3 4 5

PSNR(dB) 34.97 35.78 35.81 35.92 35.84
InferTime(ms) 80.4 90.7 101.1 111.6 123.0

Table 3. Performance with different number of spike segments

7. Visualized Results in Precise Alignment.
Fig.5 illustrates the visual comparison results in precise
alignment, demonstrating that our model better restores
scene details compared to other methods.

8. Ablation study on the number of spike seg-
ments.

We thoroughly test the number of spike segments K ∈
[1, 2, 3, 4, 5]. Tab. 3 shows that all models perform well in
terms of PSNR and inference time. The PSNR increases
from K=1 to 2, but for K>2, the increase was minimal
while the computational overhead increased. Therefore, we
choose K=2 as the final setting.
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