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Supplementary Material

A. Implementation Details
For a fair comparison with previous methods, we adopt two
representative 3D encoders for our study: Point-BERT [12]
(Transformer-based) and SparseConv [3] (convolution-
based), following the same architectural configurations as
prior methods [7, 11]. We employ OpenCLIP-ViT-G/14 [2]
as the pre-trained CLIP model. TAMM is pre-trained for
200 epochs using the AdamW optimizer [6, 8], and a cosine
learning rate scheduler with and a two-epoch warm-up, and
a base learning rate of 5×10−4. Regarding the CLIP Image
Adapter and Dual Adapters, we set α to 0.2 in Equation 3
and employ ReLU [1] and GELU [5] activation functions,
respectively, following [4, 11].

B. Additional Results on Complex Scene
Recognition

To further assess TAMM’s capability in understanding 3D
shapes from scene data, we conduct experiments using the
Hypersim dataset [9], a photorealistic synthetic dataset de-
signed for comprehensive indoor scene understanding. In
this experiment, we extract the point clouds of object in-
stances from segmentation annotations and focus on 17
classes to evaluate TAMM’s zero-shot recognition ability.
Some classes are excluded due to their amorphous shapes
(e.g., “floor,” “ceiling”) or because they are not well-defined
for classification (e.g., “otherfurniture,” “otherstructure”).
The results are detailed in Table 7, which demonstrate that
TAMM surpasses OpenShape in terms of both overall accu-
racy and average of per-class accuracy, with respective im-
provements of +5.9% and +1.8%. Significantly, TAMM
also outperforms OpenShape in 11 out of the 17 evaluated
classes. This evaluation on Hypersim underscores TAMM’s
robustness in recognizing and understanding 3D shapes de-
rived from various scene contexts.

C. Additional Results on Instance Segmenta-
tion

To delve deeper into TAMM’s proficiency in 3D scene un-
derstanding, we test whether the 3D backbone pre-trained
by TAMM can further enhance SoftGroup++ [10], the
current state-of-the-art 3D instance segmentation method.
More specifically, we integrate the pre-trained Point-BERT
model into the feature extractor module in the top-down
refinement stage of SoftGroup++, and subsequently fine-
tune the classification branch. The 3D instance segmenta-
tion results on ScanNet are illustrated in Table 6. These
results reveal that TAMM can indeed improve the over-

all performance of SoftGroup++. Notably, TAMM attains
an AP/AP50 score of 46.1%/68.0%, marking an enhance-
ment of 0.6%/1.0% over SoftGroup++. Furthermore, as
an improved pre-training approach, TAMM exceeds Open-
Shape by 0.4% AP and 0.6% AP50. The results on real-
world instance segmentation underscores TAMM’s signifi-
cant potential in the tasks of scene-level 3D understanding.

Method AP AP50 AP25

SoftGroup++† [10] 45.5 67.0 78.7
SoftGroup++ & OpenShape [7] 45.7 67.4 78.7
SoftGroup++ & TAMM (Ours) 46.1 68.0 79.0

† Reproduced using the original implementation [10].

Table 6. 3D instance segmentation results on ScanNet v2. In-
corportating TAMM into SoftGroup++ improves the AP perfor-
mance from 45.5% to 46.1%, achieving the best results.

D. Additional Qualitative Results
In this section, we provide additional qualitative results to
supplement the visualizations presented in the main body
of the paper. Figure 4 showcases examples of cross-modal
retrieval from text to 3D point clouds. Figure 5 showcases
examples of cross-modal retrieval from 2D images to 3D
point clouds. More specifically, we extract the adapted fea-
tures of the query text or image and employ the TAMM-
learned 3D backbone to find the point clouds with the most
similar features. The retrieved point clouds highly resem-
ble objects in the query text or images, reflecting that the
representations learned by TAMM are cross-modal and uni-
fied. Figure 6 demonstrates how our CLIP Image Adapter
(CIA) effectively bridges the domain gap caused by ren-
dered images, resulting in more accurate image-text match-
ing. Additionally, Figure 7 illustrates the distinctive yet syn-
ergistic roles of Image Alignment Adapter (IAA) and Text
Alignment Adapter (TAA). These adapters learn 3D rep-
resentations with focuses on vision and semantics, respec-
tively. Their integration yields more robust and compre-
hensive 3D representations, highlighting the effectiveness
of our approach.



Method OAvg. Avg. Cabi Bed Chair Sofa Tabl Door Bksh Shlv Curt Pill Clth TV Papr Twl Nght Sink Lamp

OpenShape† [7] 56.7 48.8 13.0 40.0 71.2 70.7 73.3 81.4 20.5 54.6 66.7 60.0 23.9 43.1 36.5 24.0 38.1 62.0 51.0
TAMM (Ours)† 62.6 50.6 20.6 38.2 75.3 76.2 72.6 88.1 8.2 59.1 61.9 62.8 41.0 26.2 57.3 24.0 31.0 63.0 55.0

† Results using Point-BERT [12] as 3D encoder, pre-trained on the Ensembled dataset.

Table 7. Zero-shot classification results on the Hypersim dataset. OAvg.: Overall Top-1 accuracy of all shapes. Avg.: Mean average
Top-1 accuracy of all classes. TAMM achieves the best results under both metrics.

Figure 4. Qualitative results of text-to-point-cloud retrieval. We use TAMM to acquire the features of the given query text and retrieve
the point clouds with the most similar features. The shown examples demonstrate TAMM’s strong multi-modal comprehension.



Figure 5. Qualitative results of image-to-point-cloud retrieval. We use TAMM to acquire the features of the given query images and
retrieve the point clouds with the most similar features. The shown examples demonstrate TAMM’s strong multi-modal comprehension.

Figure 6. Qualitative results of CLIP Image Adapter (CIA). CIA re-aligns the images rendered from 3D shapes with the text descriptions.
The rendered images are inaccurately matched with text when the image features are directly extracted by CLIP, and CIA can correct the
matching.



Figure 7. Qualitative results of Image Alignment Adapter (IAA) and Text Alignment Adapter (TAA). IAA and TAA decouple 3D
features with complementary visual and semantic focuses. Features from one single adapter are matched with classes whose appearance
or semantics resemble the true class; using both adapters leads to the correct class.
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