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A. Further Implementation Details

Feature extraction. The extraction of SD and DINOv2 fea-

tures is conducted in a manner similar to that described in

Zhang et al. [60]. Specifically, the SD features are extracted

from SD-1-5’s UNet decoder layer 2, 5, and 8 at timestep
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Figure 13. Distribution of the filtered images across different

species. Note that only 50 species have annotated images.

50 with an implicit captioner, and the DINOv2 features are

extracted from the token facet of the 11th layer.

Adaptive viewpoint alignment. For adaptive viewpoint

(or pose) alignment in Sec. 4.1 in the main paper, we uti-

lize segmentation masks from ODISE [55] to calculate the

Instance Matching Distance (IMD). Considering the imbal-

anced viewpoint distribution in the images, “horizontal flip”

is employed as the primary viewpoint augmentation for all

categories. Specifically for the bottle category, to accom-

modate its unique viewpoint variations, we further apply

rotations of +90°, 180°, and -90° as additional augmented

viewpoints.

Pose-variant augmentation. In terms of pose-variant aug-

mentation, we compute all the pair augmentations in a sin-

gle batch and assign weights of 1 for both single-flip and

double-flip, and a weight of 0.25 for the self-flip. Note that

pose-variant augmentation is not applied during training on

the PF-Pascal dataset due to all image pairs in this dataset
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Figure 14. Sample image pairs of AP-10K benchmark including intra species, cross species, and cross family.

are of similar pose.

Training. Our model is trained for 100k steps (equivalent to

2 epochs) on the SPair-71k dataset, and 250k steps on AP-

10K (equivalent to 1 epoch) and PF-Pascal (equivalent to 85

epochs), with a mini-batch size of 1. For a faster training,

we pre-extract features from the visual foundation models

offline and only train the post-processor online. This strat-

egy significantly reduces the training duration, allowing it

to be completed within just a few hours on a single GPU.

B. Benchmarking AP-10K Dataset for

Semantic Correspondence

Image filtering. To start with, we exclude images with

fewer than three visible keypoints or with multiple instances

of the target category, to make the dataset less ambiguous

for semantic matching.

Train/validation/test sets. After the filtering, there exists

an imbalance in the number of images per species within

the AP-10K dataset, as illustrated in Fig. 13. To ensure a

balanced evaluation across different species, we uniformly

sample an equivalent number of images for validation and

test sets across all species — specifically, Nval = 20 for

validation and Ntest = 30 for testing, in line with the pro-

tocol established by SPair-71k [31]. The remaining images

constitute the training set. It is important to note that for

these three species, king cheetah, argali sheep, and black

bear, whose numbers of images after the filtering are below

50, we earmark these as a hold-out set without including

them in the training set. Thereby, it can also provide a mea-

sure for evaluating the generalization capability of semantic

correspondence methods.

Intra-species image pair sampling. For each species, we

construct all possible image matching pairs within each val-

idation and test set (i.e.,
(

Nval

2

)

and
(

Ntest

2

)

) that are estab-

lished in the previous step. On the other hand, the train-

ing set exhibits a more significant variance in the number

of images; to circumvent the unbalanced distribution that

arises from quadratic pairing growth, we limit the pairing to

a maximum of either 50×Ntrain or
(

Ntrain

2

)

pairs, whichever

is fewer. Considering that the AP-10K dataset was not ini-

tially curated for the task of semantic correspondence, we

apply an additional filtration criterion to the image pairs,

retaining only those with a minimum of three mutual vis-

ible keypoints. This results in a total number of 260,950

training, 8816 validation, and 20,630 testing image pairs.

Cross-species and cross-family image pair sampling. We

also include correspondence matching pairs across differ-

ent species and families. For all 11 families with multi-

ple species, we sample
(

Nval

1

)

·
(

Nval

1

)

validation pairs and
(

Ntest

1

)

·
(

Ntest

1

)

testing pairs for each family. For the cross-

family setting, among all the
(

21
2

)

combination of the total

of 21 families, we only sample Nval validation and Ntest test-

ing pairs to save compute. A filtering process based on the

mutually visible keypoints is also applied, yielding a total

number of 4300 and 4200 validation pairs, alongside 9619

and 6300 testing pairs for cross-species and cross-family

correspondence, respectively. Please refer to Fig. 14 for

sample image pairs.

C. Details on Geo-Aware Correspondence

Keypoint subgroups. We list the keypoint subgroups of

each category in Tab. 6. We exclude very few parts (nostril,

eyes, etc.) that are close to each other and thus cannot be

easily distinguished by existing metrics. We suggest that an

improved metric (e.g., a keypoint can be only regarded as

a prediction to its nearest ground truth point) can make up

this issue.

Per-category proportion. We show the average proportion

of the geometry-aware subset with respect to both image

pairs and keypoint pairs for each category in Fig. 15. For

most of the categories, the geometry-aware subset accounts

for a considerable fraction of all pairs.
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Figure 15. Proportion of the geometry-aware subset with respect to image pair and keypoint pair. We show the per-category results

of SPair-71k as well as the average results of SPair-71k and AP-10K intra-species set.

Table 6. Semantically similar keypoint subgroups. We list the keypoint subgroups for categories from both SPair-71k and AP-10K. The

number in the bracket indicates the number of keypoints in each subgroup. The annotation in the index version will also be released.

Dataset Category Subgroups

SPair-71k

Aeroplane Glanding gear (2), Gengine front (2), Gwing end (2), Gengine back (2), Gwing foot front (2), Gwing foot back (2),

Gtailplane end (2), Gtailplane foot front (2), Gtailplane foot back (2)

Bicycle Ghandle (2), Gseat back end (2), Gpedal (2)

Bird Gwing end (2), Gfoot (2), Gknee (2), Ghip (2)

Boat Gupper front (2), Gupper side (2), Gupper back (2), Glower front (2), Glower side (2), Glower back (2)

Bottle Gcap (2), Gneck (2), Gshoulder (2), Gbody (2), Gbase (2)

Bus Grearview mirror (2), Glight (2), Glicence plate (2), Gfront fender (4), Gwheel (4), Grear fender (4),

Gwindow top corner (4), Gwindow bottom corner (4)

Car Grearview mirror (2), Glight (2), Glicence plate (2), Gbrand logo (2), Grear fender (4), Gwheel (4),

Gfront fender (4), Gwindow bottom corner (4), Gwindow top corner (4)

Cat Gear (2), Gpaw (4)

Chair Gcushion front (2), Gcushion back (2), Gleg (4), Gbackrest top (2), Garmrest front (2), Garmrest back (2)

Cow Gear (2), Ghoof (4), Gknee (4), Ghorn (2)

Dog Gear (2), Gpaw (4)

Horse Gear (2), Ghoof (4), Gknee (4)

Motorbike Grearview mirror (2), Ghandle (2)

Person Gshoulder (2), Gelbow (2), Gwrist (2), Gknee (2), Gankle (2), Gfoot (2)

Pottedplant Gtop (4), Gside wall (2), Gbottom (2)

Sheep Gear (2), Ghoof (4), Gknee (4), Ghorn (2)

Train Gfront top (2), Gfront bottom (2), Gback top (2), Gback bottom (2), Gwindow top outer corner (2),

Gwindow bottom outer corner (2), Gwindow top inner corner (2), Gwindow bottom inner corner (2), Gfront light (2)

Tvmonitor Gouter corner (4), Gouter side (4), Ginner corner (4), Ginner side (4)

AP-10K All Gshoulder (2), Gfoot (4), Gknee (4), Ghip (2)

Notably, due to the unbalanced pose distribution exhib-

ited in specific categories of the SPair-71k (e.g. bottles, pot-

ted plants, TVs, and trains) where image pairs often share

similar poses, almost all keypoint subgroups in these cate-

gories are mutually visible, which results in proportions to

be near 100%. In contrast, the AP-10K dataset, comprised

solely of animal images, does not exhibit this imbalance.

Per-category performance. In Fig. 16a and Fig. 16b,

we provide detailed per-category performance for both un-

supervised and supervised state-of-the-art methods on the

geometry-aware subset and the standard set. These figures

provide an expanded view of Fig. 4 from the main paper.

Regardless of the method or category, performance on the

geometry-aware subset consistently lags behind that of the
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(a) Performance of the unsupervised methods.
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Figure 16. Per-category performance of the state-of-the-art methods and ours (blue). We report both the geometry-aware subset (Geo.)

and the standard set on SPair-71k. Our methods consistently outperform previous arts across all categories.
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Figure 17. Per-category evaluation of the sensitivity to pose variations. Both our zero-shot (yellow) and supervised methods (blue)

considerably improve the robustness to pose variations on both the geometry-aware set (Geo., hashed bar) and the standard set (solid bar)

compared to the state-of-the-art methods [60]. We exclude categories that only have one azimuth-variation subset.

standard set.

Additionally, in Fig. 17, we offer a per-category analysis

of pose variation sensitivity. The results for both unsuper-

vised and supervised variants of SD+DINO [60] are pre-

sented, comparing their performance on both the geometry-

aware and standard sets. This analysis serves as an ex-

tended version of Fig. 5 from the main paper. The findings

clearly show that sensitivity to pose variation is consider-

ably higher in the geometry-aware subset across all cate-

gories and methodologies.

D. Additional Analysis

D.1. Detailed Performance on GeoAware Subset

We provide the per-category performance on the geometry-

aware subset in Fig. 16 as well as the pose-sensitivity anal-

ysis of our methods in Fig. 17.

D.2. Detailed Analysis on Window Soft Argmax

Performance in accordance with window size. We eval-

uate the effect of soft-argmax’s window size on the perfor-

mance at different PCK thresholds. As depicted in Fig. 18,

the performance across all PCK levels initially improves

and then declines as the window size increases from 0 (hard

argmax) to 60 (soft argmax). Notably, the peak PCK values

for 0.01, 0.05, and 0.1 are observed at window sizes of 5,

11, and 17, respectively. We opt for a window size of 15 to

achieve an optimal balance in performance.

Comparison with Gaussian kernel soft argmax. Previ-

ous work [23] also explored a trade-off solution between

hard and soft argmax by applying a Gaussian kernel on the

feature map, centered at the hard argmax position.

We also search different σ values for the Gaussian kernel

to achieve the best performance across different PCK levels.

We then compare our window soft argmax with the kernel
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Figure 18. Performance of different PCK levels vs. soft argmax

window size. We test the performance on the SPair-71k dataset

and set the window size as 15 for optimal balance.

soft argmax in Tab. 7 on different peak PCK levels and the

default value as reported in [23]. Our window soft argmax

consistently outperforms kernel argmax across all settings,

suggesting the superiority of our approach. We hypothesize

that this is because when using the argmax-centered Gaus-

sian kernel to scale the similarity map, it makes the similar-

ity map biased to argmax locations, while our method treats

the window region with the same scale.

Training with window soft argmax. We also experi-

ment if applying the window soft argmax during training

is beneficial. As shown in Tab. 8, applying window soft

argmax during training hurts the PCK performances with

the loose thresholds, while helping the stricter threshold

(i.e., PCK@0.01). Our hypothesis is that applying windows

during training helps the model focus on the local region

but overlook global information.

D.3. Discussion on Generalizability

As shown in the main paper, we validate the generalizability

of our method by training on AP-10K intra-species set and

Table 7. Comparison with Gaussian kernel soft argmax on

SPair-71k. Default and peak values for each PCK level are re-

ported for both methods, with the best results bolded.

Setting Method PCK@0.01 PCK@0.05 PCK@0.10

Default
Kernel 19.7 73.5 84.3

Window 22.0 75.3 85.6

Best PCK@0.01
Kernel 22.4 75.0 84.9

Window 22.6 75.3 85.0

Best PCK@0.05
Kernel 22.3 75.3 85.3

Window 22.3 75.4 85.5

Best PCK@0.10
Kernel 21.9 75.1 85.5

Window 22.0 75.2 85.7

Table 8. Effect of applying window soft argmax during train-

ing. We train all the post-processors on SPair-71k for one epoch

and from scratch. The best results are bolded.

Setting PCK@0.01 PCK@0.05 PCK@0.10

Window Soft Argmax (7) 21.4 69.0 79.0

Window Soft Argmax (15) 21.8 69.5 80.1

Window Soft Argmax (22) 22.1 70.3 81.2

Soft Argmax 20.4 70.8 82.1

testing on cross-species and cross-family subsets. Here, we

extend this analysis with additional tests:

Training on PF-PASCAL and testing on other datasets.

We evaluate the generalizability of our method by training

it on PF-PASCAL and then testing it on SPair-71k and AP-

10K intra-species test sets (see Tab. 10). While previous

studies [7, 16] have noted a potential performance decrease

due to models’ overfitting to the limited distribution of pose

variation in PF-PASCAL, our method consistently outper-

forms across different datasets and PCK thresholds, demon-

strating its robustness.

Training on SPair-71k and testing on AP-10K and PF-

PASCAL. In a similar vein, we trained our model on the

SPair-71k dataset and evaluated its performance on PF-

PASCAL and AP-10K intra-species test sets (see Tab. 11).

The findings mirrored those from Tab. 10, with our ap-

proach achieving the best results across all datasets and

PCK metrics, confirming its generalizability again.

D.4. Additional Ablation Analysis under Super
vised Setting

To further evaluate the effect of each component on improv-

ing semantic correspondence, we conduct a leave-one-out

ablation analysis. For an in-depth understanding of the spe-

cific improvements, we incorporate the breakdown analysis

protocol from ”Demystifying” [3] into our ablation study.

This analysis introduces four metrics, as delineated in [3]:

1) Jitter: the ratio of matches near their correct locations;

2) Miss: the ratio of points incorrectly matched to the back-



Table 9. Leave-one-out ablation study on SPair-71k. We report the per image results and four metrics introduced in [3] (i.e., Jitter, Miss,

Swap, and PCK†) for a detailed analysis of the effect of each module. The best results are bold.

Variations Jitter↓ Miss↓ Swap↓ SwapLR↓ PCK†@0.1↑ PCK@0.01↑ PCK@0.05↑ PCK@0.1↑

SD+DINO (S) (Baseline) 9.7 13.7 15.8 9.4 70.5 9.6 57.7 74.6

w/o Dense Training Objective 8.3 11.8 13.7 8.5 74.5 15.2 64.5 78.3

w/o Pose-variant Augmentation 7.4 10.0 13.9 8.7 76.1 19.0 70.3 81.5

w/o Perturbation & Dropout 6.9 9.9 12.3 7.2 77.8 20.3 71.8 82.3

w/o Window Soft Argmax 8.1 9.8 14.1 8.7 76.1 15.1 69.3 81.3

Ours 6.9 9.3 12.0 7.0 78.7 21.6 72.6 82.9

Ours w/ AP-10k Pretraining 6.1 8.7 10.4 5.6 80.9 22.0 75.3 85.6

Table 10. Generalizability test with training on PF-PASCAL.

We test the generalizability of our method by training the model

on the PF-PASCAL dataset and testing on the SPair-71k and AP-

10K intra-species (I.S.) test set. The best results are bold.

SPair-71k AP-10K-I.S.

Method 0.01 0.05 0.10 0.01 0.05 0.10

SCorrSAN [16] 1.5 18.4 32.7 - - -

CATs++ [7] 2.1 19.7 32.0 - - -

DHF [30] 4.6 30.1 41.8 7.3 37.0 49.1

SD+DINO (S) [60] 5.3 34.1 46.9 8.2 43.4 59.2

Ours 5.3 37.1 54.3 10.1 44.0 62.5

Table 11. Generalizability test with training on SPair-71k. We

test the generalizability of our method by training the model on

the SPair-71k dataset and testing on the PF-PASCAL and AP-10K

intra-species (I.S.) test set. The best results are bold.

PF-PASCAL AP-10K-I.S.

Method 0.05 0.10 0.15 0.01 0.05 0.10

SCorrSAN [16] 54.5 71.2 78.8 - - -

CATs++ [7] 54.8 68.7 76.1 - - -

DHF [30] 64.2 77.8 84.0 9.3 42.0 55.2

SD+DINO (S) [60] 68.9 81.7 87.2 9.7 50.4 65.9

Ours 74.0 85.3 89.7 16.5 56.7 70.2

ground; 3) Swap: the ratio of matches that are in the correct

area but nearer to a different semantic part; 4) PCK†: the

PCK metric adjusted to exclude Swap errors. For compre-

hensive details, please see Sec. 4.1 of [3]. To advance our

evaluation of geometry-aware correspondence further, we

introduce an additional metric, SwapLR, for geometric con-

fusion (left/right) cases.

As shown in Tab. 9, our method significantly improves

Jitter, Miss, Swap, SwapLR by 37.1%, 36.5%, 36.0%, and

40.4%, respectively. Specifically, the integration of spa-

tial context through our proposed dense training objective

and the window soft argmax technique notably boosts the

performance for Jitter, Swap, and SwapLR, which relies on

detailed spatial understanding. Besides, the dense training

objective also contributes largely in overcoming the Miss

error, we hypothesize that the soft argmax operator in dense

training objective can effectively suppress the background

noise. Moreover, by encouraging the pose-awareness, the

proposed pose-variant pair augmentation notably reduces

both the Swap errors, and especially the geomety-aware

SwapLR error.

In summary, the improvement in SwapLR metric further

validates the effectiveness of our designs in improving the

geometric-awareness of the pretrained features, while the

gain in Miss showcases that our method also reduces mis-

matches to the image background.

D.5. Ablation Study under Unsupervised Setting

In the main paper, our zero shot method consists of two

techniques: adaptive pose alignment and window soft

argmax. In this section, we further ablate different tech-

niques to evaluate the effectiveness of each module under

the unsupervised setting.

As shown in Tab. 12, our adaptive pose alignment tech-

nique consistently improves the performance across all five

inference settings. Additionally, under both with or without

adaptive pose alignment settings, our window soft argmax

method consistently boosts the performance on both the

geometry-aware subset and standard set, outperforming ei-

ther the argmax or soft argmax. This further demonstrates

the effectiveness of our method.

E. Additional Results

E.1. Alternative Metrics for Pose Alignment

In our adaptive pose alignment method, we leverage the

mask of the source image, obtained through an off-the-shelf

segmentation method, ODISE [55], to calculate the match-

ing distance. While this mask is solely used for pose align-

ment and does not restrict the solution space for the target

image, we propose more flexible approaches to calculate the

metric for pose alignment.



Table 12. Ablation study under unsupervised setting. We report the PCK@αbbox results on both the standard set (Std.) and geometry-

aware set (Geo.) of SPair-71k. The best performances are bold.

SPair-71k (Std.) SPair-71k (Geo.)

Method Variants Inference Strategy 0.01 0.05 0.10 0.01 0.05 0.10

SD+DINO [60]

Argmax Inference (Default) 7.9 44.7 59.9 5.3 34.5 49.3

Soft Argmax Inference 6.4 36.5 53.7 6.4 36.5 53.7

Window Soft Argmax (3) 10.0 45.9 60.1 6.7 35.5 49.6

Window Soft Argmax (5) 9.9 46.3 60.5 6.6 35.8 50.1

Window Soft Argmax (11) 8.7 45.3 61.3 5.5 34.3 51.1

SD+DINO [60] w/ Adapt. Pose

Argmax Inference (Default) 8.9 48.7 64.2 6.3 39.6 55.0

Soft Argmax Inference 7.6 40.7 58.4 4.1 29.0 48.2

Window Soft Argmax (3) 11.2 49.7 64.3 8.3 40.8 55.4

Window Soft Argmax (5) 11.1 50.1 64.8 8.1 41.1 56.0

Window Soft Argmax (11) 9.9 49.1 65.4 6.9 39.5 56.8

Table 13. Effect of different adaptive pose alignment metric.

Alternative approaches with relaxed conditions can achieve very

competitive results that are much better than the baseline.

Setting PCK@0.01 PCK@0.05 PCK@0.10

None (Baseline) 7.9 44.7 59.9

Mutual-NN 8.5 47.8 63.1

SAM-mask [22] 8.6 48.5 64.0

ODISE-mask [55] (Default) 8.9 48.7 64.2

Firstly, as an alternative to generating masks based on

object categories (as in ODISE), we can employ a query-

point-based segmentation method, e.g., SAM [22], to ob-

tain the instance mask. Such setting has a more relaxed

condition because the semantic correspondence task natu-

rally provides query keypoints of the instance in the source

image. Furthermore, we can eliminate the need for masks at

all by using the average distance of mutual nearest-neighbor

pixels as the alignment metric. As shown in the Tab. 13,

both alternative metrics yield highly competitive results,

significantly surpassing our baseline.

E.2. Qualitative Results on AP10K

We show the qualitative comparison of our supervised

methods with both unsupervised and supervised versions of

SD+DINO [60] on AP-10K intra-species (Fig. 19), cross-

species (Fig. 20), and cross-family (Fig. 21) subset.

E.3. Additional Qualitative Results on SPair71k

In Fig. 22 and Fig. 23, we show the qualitative compari-

son of our supervised methods with both the unsupervised

and supervised versions of SD+DINO [60] on SPair-71k

dataset. Our method establishes correct correspondence for

challenging cases that previous works cannot handle.
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Figure 19. Qualitative comparison on the AP-10K intra-species set.
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Figure 20. Qualitative comparison on the AP-10K cross-species set.
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Figure 21. Qualitative comparison on the AP-10K cross-family set.
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Figure 22. Qualitative comparison on the SPair-71k. Our method shines even in cases with large viewpoint variations.
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Figure 23. Qualitative comparison on the SPair-71k. Our method shines even in cases with large viewpoint variations.
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