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A. Proof of theorem 1
Definition 1 (CDAW: Class-wise Distributionally Adver-
sarial Weight). Given a class-wise objective loss ℓ′c ∈ R
on the adversarial examples, for all classes c ∈ C, the opti-
mal Class-wise Distributionally Adversarial Weight vector
wcda

∗ belonging to the probability simplex ∆C aims to max-
imize the overall loss:

LFAAL :=max

C∑
c=1

wcda
c ℓ′c

s.t. d(U ,wcda) ≤ τ,wcda ∈ ∆C

(1)

wcda
∗ := argmaxLFAAL (2)

Theorem 1. Given the loss LFAAL defined in Eq. (1) on the
observed distribution, and suppose the regular loss L =:
1
C

∑C
c=1 ℓ

′
c on the test distribution with unknown group dis-

tribution shift, then the following holds for all wcda ∈ ∆C:

Pr(LFAAL>L) ≥ 1− e−τn+O(n) (3)

Where KL(U ,wcda) ≤ τ , U is the uniform distribution.

Lemma 1. [5, 12] Let D̂n be the empirical distribution of
n independent samples with distribution D, then:

Pr(D ∈ D′ s.t. KL(D̂,D′) ≤ r) ≥ 1− e−rn+O(n)

(4)

Proof. Lemma 1 tells that the probability of D ∈ D′ (out-
of-sample disappointment) decays at a prescribed exponen-
tial rate r as the sample size n tends to infinity—irrespective
of true data-generating distribution. Here the out-of-sample
disappointment quantifies the probability that the actual ex-
pected loss of the model exceeds its predicted loss.

Hence when considering the associated loss and replac-
ing r as our defined constraint parameter τ , LFAAL can be
rewritten as:

LFAAL := maxED′ [ℓ(θ)] s.t. KL(D̂,D′) ≤ τ (5)

Similarly L can be written as L := ED[ℓ(θ)] with D may
having unknown distribution shift, by replacing D̂ with uni-
form distribution U and replacing the D′ with wcda, then
we can get:

Pr(LFAAL ≥ L,∀wcda ∈ ∆C) > 1− e−rn+O(n) (6)

This indicates LFAAL remains as an upper bound on the
mean loss L uniformly over wcda ∈ ∆C with high proba-
bility.

Algorithm 1 Fairness-Aware Adversarial Learning
Input: Training set {X,Y }, total epochs T , adversar-
ial radius ϵ, step size α, the number of adversarial itera-
tion K, model f parameterized by θ, the number of mini-
batches M , batch size B, distribution shift constraint τ
Output: A robust and fair model

1: for t = 1, . . . , T do
2: for i = 1, . . . ,M do
3: # Phase 1: Inner maximization

δ = 0
4: for j = 1, . . . ,K do
5: δ = δ + α · sign(∇δℓCE(fθ(xi + δ), yi))
6: δ = max(min(δ, ϵ),−ϵ)
7: end for
8: xadv

i = clip(xi + δ, 0, 1)
9: # Phase 2: Intermediate maximization

ℓi = ℓCE(fθ(x
adv
i ), yi, reduction =‘none’)

# Calculate the cross-entropy loss for each in-
stance

10: for c = 1 . . . C do
11: ℓ′c = ℓCW(fθ(x

adv
i , yi)[yi = c]

# Calculate the average margin for each class c
12: end for
13: wcda

∗ = solve kl dro(ℓ′, τ)
# Solve the optimal class-wise weights for the cur-
rent batch under the worst distribution via DRO

14: LFAAL = 1
B

∑B
i=1 w

cda
∗ [y] · ℓi · C

15: # Phase 3: Outer Minimization
θ = θ −∇θLFAAL

16: end for
17: end for
18: return Robust model fθ with high fairness

Our assumption is that the robust fairness issue in the
conventional AT is due to the overfitting of the unknown
group (class) distribution shift induced by adversarial per-
turbations. Therefore, by optimizing with the upper loss
LFAAL, we are able to better deal with some unknown dis-
tribution shift (even if they have not been during train-
ing), as will be indicated in Sec. C.1.

B. Algorithm Details

Algorithm 1 demonstrates the whole pseudo-code for the
proposed FAAL framework, here we further explain the de-
tail of Phase 2: Intermediate maximization. Here we extend
Phase 2 into PGD-AT by default as shown in lines 9-14. It
is noted that our framework is completely compatible with



Table 1. Comparison among different adversarial training methods using Preact-ResNet18 model regarding the Clean/AA accuracy on
CIFAR-10 dataset and the corresponding corruption accuracy of different corruptions on CIFAR-10-C dataset. The best performance is
highlighted in Bold.

PRN-18 Model

Average Acc (Worst-class Acc) (%)

CIFAR-10 CIFAR-10-C (Noise) CIFAR-10-C (Weather) CIFAR-10-C (Blur) CIFAR-10-C (Digital)

Clean AA Gaussian Shot Impulse Brightness Snow Zoom Motion JPEG Pixelation

TRADES 82.54 (66.10) 49.05 (20.70) 78.82 (57.26) 79.72 (59.14) 75.59 (51.98) 78.60 (65.86) 76.77 (61.00) 77.17 (65.16) 74.53 (60.30) 80.69 (64.56) 80.77 (64.44)

CFATRADES 80.36 (66.20) 50.10 (26.50) 75.57 (56.00) 76.71 (58.08) 72.83 (51.98) 75.61 (63.18) 74.27 (55.32) 72.88 (58.42) 70.35 (49.66) 78.01 (62.38) 77.72 (62.82)

WATTRADES 80.37 (66.00) 46.16 (30.70) 76.32 (59.20) 77.21 (60.08) 72.44 (56.90) 75.04 (64.68) 72.83 (60.42) 73.22 (58.06) 71.09 (52.00) 77.94 (62.74) 77.89 (61.76)

FAALTRADES 81.62 (68.90) 48.48 (33.60) 77.42 (62.36) 78.31 (63.34) 74.10 (59.08) 76.62 (65.56) 74.53 (60.86) 73.26 (60.48) 70.77 (52.34) 78.83 (65.60) 78.67 (64.88)

FAALTRADES−AWP 82.19 (72.00) 48.08 (35.00) 77.60 (65.02) 78.67 (66.16) 73.66 (61.58) 76.81 (67.30) 74.34 (61.04) 73.84 (63.50) 71.67 (55.16) 79.38 (68.28) 79.50 (67.96)

other min-max-based adversarial training approaches like
TRADES [16] or MART [13]. To achieve this, one just
needs to keep the original implementation for both inner
maximization and outer minimization unchanged and add
the intermediate maximization independently.

Therefore, after generating adversarial examples by
PGD in Phase 1, we first calculate the cross-entropy loss for
each adversarial instance, then we compute the average CW
margin loss for each class ℓ′ = [ℓ′1, ..., ℓ

′
c] (because there

may be multiple samples for one class in a batch). It is noted
that normally we are expecting that the batch-size is large
enough to include samples from all classes, however, when
there this no sample for a particular class in batch, e.g. for
a large number of classes dataset CIFAR-100, we manually
set the margin to −1. We utilize these class margins to solve
the Class-wise Distributionally Adversarial Weight wcda

defined in Eq. (2) with constraint τ . By solving this convex
optimization in the function solve kl dro thought the
cvxpy solver, then wcda[y] will map the optimal weights to
all samples according to their class labels. In this way, when
τ = 0, wcda becomes a uniform distribution with all values
equal to 1

C , and the proposed method degrades to the con-
ventional PGD-AT. Therefore, FAAL can be seen as an ex-
tension on the conventional adversarial training framework,
where the whole optimization is from min-max to min-
max-max. Although we perform this convex optimization
in every batch, the resulting extra computation is still negli-
gible as shown in the experiments.

It is noted that all the existing state-of-the-art related
works addressing robust fairness do not require the mini-
batch should be balanced including ours. This is because
we are considering a class-balanced dataset, i.e. all classes
have the same number of samples, thus the expected value
of the mini-batch gradient estimator (like an ideal Neural
Network) is equal to the true gradient [1], irrespective of
the size. In other words, we expect that a deep neural neural
has enough capacity to handle this situation during training.
Dealing with the imbalanced dataset like applying sampling

strategy [11] is out of the focus of this paper.

C. Experiments Details

All our experiments are conducted on a single NVIDIA
3090ti GPU with 24GB of graphics memory.

C.1. Enhanced Robustness against Unknown Dis-
tribution Shift

As our assumption is that the robust fairness issue in the
conventional AT is due to the over-fitting of the unknown
group (class) distribution shift induced by adversarial per-
turbations, we are expecting that the proposed method is
able to handle other unknown distribution shift noises apart
from the adversarial noise that we are focusing on in the pa-
per. Therefore, we further validate our assumption by con-
ducting the extra experiments on CIFAR-10-C dataset [7],
as this dataset is unseen during training, it can be regarded
as the natural unknown distribution shift. CIFAR-10-C is
an extended dataset based on CIFAR-10 test dataset [8],
which contains several common corruptions that may occur
in real-world situations. We report the average/worst-class
corruption accuracy against the following corruptions:
• Gaussian noise: can appear in low-lighting conditions.
• Shot noise: also called Poisson noise, is electronic noise

caused by the discrete nature of light itself.
• Impulse noise: a color analog of salt-and-pepper noise

and can be caused by bit errors.
• Brightness: varies with daylight intensity.
• Snow: is a visually obstructive form of precipitation.
• Zoom blur: occurs when a camera moves toward an ob-

ject rapidly.
• Motion blur: appears when a camera is moving quickly.
• JPEG: is a lossy image compression format that intro-

duces compression artifacts.
• Pixelation: when upsampling a low-resolution image

The results depicted in Tab. 1 highlight the robustness
of various PRN-18 models against different types of cor-



ruptions, with each model having been adversarially trained
using the methodologies outlined in the main manuscript.
It is evident that the CFA approach struggles to uphold
high worst-case accuracy across all categories of corrup-
tion (noise, weather, blur, and digital). While WAT demon-
strates some degree of robust fairness against noise corrup-
tion, it, unfortunately, compromises both the average and
worst-case accuracy in the remaining categories (weather,
blur, and digital). In contrast, FAAL shows a commend-
able ability to reserve robust fairness in noise, weather, and
digital corruptions, albeit with a minor reduction in average
accuracy. This underscores its enhanced capability for han-
dling various corruptions and unknown distribution shifts,
aligning with our initial hypotheses. An interesting observa-
tion is the consistent adverse impact of adversarial training
on the robustness against blur corruption across all models.
This could be attributed to a significant divergence between
the adversarially learned noise during training and the char-
acteristics of blurring, and even our approach with small τ
can not fully cover this type of distribution shift. Notably, in
this context, FAAL still outperforms the other two advanced
models, underscoring its effectiveness.

C.2. Objective Loss for Solving the Intermediate
Maximization

Figure 1 plots the results of fine-tuning the Preact-ResNet18
model on CIFAR-10 dataset using different objective losses
in the proposed intermediate maximization. It can be easily
observed that by replacing the original cross-entropy loss
with the CW margin loss, the performance of robust fair-
ness can be promoted better. This is because the magnitude
of cross-entropy loss does not reflect how well the class has
been learned, as indicated in [2]. Conversely, the margin
loss represents the marginal discrepancy between the true
label and the most suspicious category, the smaller the mar-
gin we obtain, the more robust performance we can achieve.
In addition, margin loss is bound by [−1, 1], while cross-
entropy loss is unbounded from 0 to ∞.

C.3. Adversarial Fine-tuning for Preact-ResNet18
Model on CIFAR-10 Dataset

We first compare our methods with the conventional ad-
versarial training and FRL on CIFAR-10 dataset [8] us-
ing Preact-ResNet18 (PRN-18) model [6]. We adversar-
ially trained the models without considering robust fair-
ness by conventional PGD [10] and TRADES [16], respec-
tively. Similarly, we apply the best versions of FRL [15]:
FRL-RWRM with τ1 = τ2 = 0.05 and FRL-RWRM with
τ1 = τ2 = 0.07, where τ1 and τ2 are the fairness constraint
parameters for reweight and remargin of FRL, we name
them FRL-RWRM0.05 and FRL-RWRM0.07 for short, and
the target models are fine-tuned for 80 epochs and the best
results are presented. As for FAAL, we set the value of τ

Figure 1. CE vs. CW: Accuracy for fine-tuning Preact-ResNet18
models using different objectives during the intermediate maxi-
mization on CIFAR-10

in our method as 0.5 and fine-tune the original pre-trained
models for 2 epochs. The learning rate is configured from
0.01 in the first epoch and drops to 0.001 in the second
epoch. We report the average & worst-class accuracy under
different adversarial attacks (Clean / PGD [10] / CW [3] /
AutoAttack [4]) as the evaluation metrics. The perturbation
budget is set to ϵ = 8/255 on CIFAR-10 dataset.

As shown in Tab. 2, given two adversarial trained Preact-
ResNet18 models with different adversaries (PGD-AT and
TRADES) on CIFAR-10 dataset, the proposed method
FAAL is able to fine-tune both models to promote the robust
fairness. It can be easily observed that FAALAT can ob-
tain better results on the overall and worst-class robustness,
even if the TRADES model is not adversarially trained by
the PGD adversary. Most importantly, FRL requires many
epochs (80 epochs) to obtain the final results, while our
method, is able to achieve slightly better results within only
2 epochs. It is noted that the improvement is not as huge
as that on the large Wide-ResNet model as discussed in the
main manuscript, the full table of it can be seen in Tab. 3.
This discrepancy may be attributed to the differences in
model architecture, where the larger model, endowed with
a greater number of parameters, is inherently better suited
to executing more complex training paradigms.

C.4. Working with Other Adversaries?

Although we use the PGD-AT adversary by default for ad-
versarial fine-tuning, our method can be easily integrated
with other techniques like TRADES and TRADES-AWP as
well. Tables 2 and 3 reports the results of the PRN/WRN
models on CIFAR-10 dataset, where the different adver-
saries are applied to fine-tune the original unfair model.
We can observe that fine-tuning the model with AT-based



Table 2. Evaluation of different fine-tuning methods on CIFAR-10 dataset using PRN-18 model. The best result is highlighted in Bold.

Adversarially Trained PRN-18 Model
Fine-Tuning

Epochs
Average Accuracy (Worst Class Accuracy) (%)

Clean PGD-20 CW-20 AA

PGD-AT - 82.72 (55.80) 50.92 (16.80) 50.14 (16.50) 47.38 (12.90)

+ Finetune with FRL-RWRM0.05 80 80.92 (72.20) 48.18 (34.20) 46.13 (32.30) 44.54 (30.70)

+ Finetune with FRL-RWRM0.07 80 82.47 (71.90) 49.11 (35.20) 47.20 (32.30) 45.57 (30.00)

+ Fine-tune with FAALAT 2 82.34 (67.80) 49.97 (34.80) 48.15 (32.30) 45.51 (31.10)

+ Fine-tune with FAALAT−AWP 2 82.08 (66.90) 51.62 (38.70) 48.89 (35.00) 46.68 (30.10)

+ Fine-tune with FAALTRADES 2 77.96 (70.80) 48.57 (37.90) 45.32 (32.10) 44.37 (30.70)

+ Fine-tune with FAALTRADES−AWP 2 77.61 (66.30) 49.99 (40.30) 45.89 (34.20) 44.48 (30.20)

TRADES - 82.54 (66.10) 52.29 (24.60) 50.59 (22.50) 49.05 (20.70)

+ Fine-tune with FRL-RWRM 0.05 80 80.71 (67.80) 48.22 (34.70) 46.56 (30.70) 44.64 (28.30)

+ Fine-tune with FRL-RWRM 0.07 80 82.12 (65.90) 47.62 (33.10) 46.23 (30.00) 44.60 (27.90)

+ Fine-tune with FAALAT 2 83.67 (71.80) 48.93 (34.60) 47.51 (32.70) 45.10 (28.80)

+ Fine-tune with FAALAT−AWP 2 83.26 (69.40) 52.42 (39.40) 49.83 (33.50) 47.62 (30.70)

+ Fine-tune with FAALTRADES 2 81.38 (69.40) 50.01 (34.00) 47.66 (30.50) 46.42 (28.30)

+ Fine-tune with FAALTRADES−AWP 2 80.43 (68.10) 51.45 (37.90) 48.04 (32.10) 47.09 (31.30)

Figure 2. Fine-tuning a pre-trained PGD-AT model using
FAALAT and FAALTRADES (different adversaries) on CIFAR-10

(PGD-AT) or TRADES-based adversaries both can boost
the worst-class accuracy. And TRADES-based adversaries
can perform slightly better than AT-based on the worst-class
AutoAttack accuracy. However, when applying FAAL with
a TRADES-based adversary, it results in a larger drop in the
overall clean/robust accuracy, but AT-based FAAL is able to

maintain the average clean/robust accuracy while boosting
the worst-class accuracy. After considering the overall per-
formance, we decided to use the proposed FAAL with PGD-
AT adversary as our default setting. Figure 2 illustrates this
phenomenon more clearly.

C.5. Adversarial Training for Preact-ResNet18
Model on CIFAR-10 Dataset

We also train the Preact-ResNet18 model from scratch using
different methods, including PGD-AT [10], TRADES [16],
CFA [14], WAT [9], FAAL with different adversaries. All
models are trained for 200 epochs with the learning rate de-
caying by a factor of 0.1 at the 100-th and 150-th epochs,
successively. In addition, we applied the default setting
and the hyper-parameters including batch size 128; SGD
momentum optimizer with the initial learning rate of 0.1;
weight decay 5 × 10−4; ReLU activation function and no
label smoothing. The results are reported in Tab. 4. It can be
clearly observed that our method FAAL consistently outper-
forms the other state-of-the-art approaches most of the time.
Compared to the result of fine-tuning, training with more
epochs indeed brings some benefits, not only from the aver-
age robustness but also from the worst-class robustness. A
clear demonstration can be seen in Fig. 3, where our method
is able to alleviate the issue of robust fairness by promoting
the worst-case performance across all categories.



Table 3. Evaluation of different fine-tuning methods on CIFAR-10 dataset using WRN-34-10 model. The best result is highlighted in Bold.

Adversarially Trained WRN-34-10 Model
Fine-Tuning

Epochs
Average Accuracy (Worst Class Accuracy) (%)

Clean PGD-20 CW-20 AA

PGD-AT - 86.07 (69.70) 55.90 (29.90) 54.29 (28.30) 52.46 (24.40)

+ Fine-tune with FRL-RWRMλ=0.05 80 83.25 (74.80) 50.37 (38.10) 49.77 (36.60) 46.97 (33.10)

+ Fine-tune with FRL-RWRMλ=0.07 80 85.12 (71.60) 52.56 (37.10) 51.92 (35.50) 49.60 (31.70)

+ Fine-tune with FAALAT 2 86.23 (69.70) 54.00 (37.60) 53.11 (36.90) 50.81 (35.70)

+ Fine-tune with FAALAT−AWP 2 85.47 (69.40) 56.46 (39.20) 54.50 (38.10) 52.47 (36.90)

+ Fine-tune with FAALTRADES 2 83.02 (74.10) 53.14 (40.00) 51.49 (37.40) 50.31 (36.50)

+ Fine-tune with FAALTRADES−AWP 2 80.99 (73.40) 53.38 (41.30) 49.66 (33.80) 48.94 (32.60)

TRADES - 84.92 (67.00) 55.32 (27.10) 53.92 (24.80) 52.51 (23.20)

+ Fine-tune with FRL-RWRMλ=0.05 80 82.90 (72.70) 53.16 (40.60) 51.39 (36.30) 49.97 (35.40)

+ Fine-tune with FRL-RWRMλ=0.07 80 85.19 (70.90) 53.76 (39.20) 52.92 (36.80) 51.30 (34.60)

+ Fine-tune with FAALAT 2 85.96 (75.00) 53.46 (39.80) 52.72 (38.20) 50.91 (35.30)

+ Fine-tune with FAALAT−AWP 2 85.39 (72.90) 56.07 (43.30) 54.16 (38.60) 52.45 (35.40)

+ Fine-tune with FAALTRADES 2 83.79 (73.60) 54.44 (39.00) 52.54 (37.30) 51.35 (36.10)

+ Fine-tune with FAALTRADES−AWP 2 82.44 (70.50) 55.45 (39.60) 52.48 (37.90) 51.60 (36.90)

MART - 83.62 (67.90) 56.22 (32.50) 52.79 (25.70) 50.95 (22.00)

+ Fine-tune with FRL-RWRMλ=0.05 80 83.72 (71.80) 52.16 (37.50) 50.73 (35.00) 49.19 (31.70)

+ Fine-tune with FRL-RWRMλ=0.07 80 82.09 (71.80) 50.86 (36.00) 49.78 (33.00) 47.78 (30.30)

+ Fine-tune with FAALAT 2 83.49 (68.00) 51.65 (37.80) 50.36 (37.10) 48.63 (34.00)

+ Fine-tune with FAALAT−AWP 2 82.17 (64.00) 54.31 (39.50) 51.72 (37.70) 50.31 (36.40)

+ Fine-tune with FAALTRADES 2 81.65 (70.60) 51.65 (37.80) 50.05 (36.90) 48.73 (35.30)

+ Fine-tune with FAALTRADES−AWP 2 80.08 (68.90) 52.74 (40.30) 49.91 (37.40) 48.95 (36.60)

TRADES-AWP - 85.35 (67.90) 59.20 (28.80) 57.14 (26.50) 56.18 (25.80)

+ Fine-tune with FRL-RWRMλ=0.05 80 82.31 (65.90) 49.90 (31.70) 49.68 (34.00) 46.50 (27.70)

+ Fine-tune with FRL-RWRMλ=0.07 80 84.24 (65.70) 48.63 (30.90) 49.77 (31.50) 46.53 (28.60)

+ Fine-tune with FAALAT 2 87.02 (76.30) 52.54 (35.00) 51.70 (34.40) 49.87 (30.60)

+ Fine-tune with FAALAT−AWP 2 86.75 (74.80) 57.14 (43.40) 55.34 (40.10) 53.93 (37.00)

+ Fine-tune with FAALTRADES 2 84.62 (74.80) 54.03 (34.00) 52.69 (32.10) 51.37 (30.50)

+ Fine-tune with FAALTRADES−AWP 2 84.25 (76.10) 57.35 (38.30) 54.54 (34.30) 53.66 (32.90)

C.6. More Comparisons and Ablation Study

Although CFA [14] and WAT [9] are not proposed for fine-
tuning, we also managed to adapt them for fine-tuning. We
followed their implementations, respectively and tried to
apply them to fine-tune a WRN-34-10 model trained by the
PGD adversary. As shown in Tab. 5, both WAT and CFA
fail to provide high worst-class robustness within limited
epochs, but our FAAL method is able to achieve this within
2 epochs. In addition, we also investigate the impact of the
number of epochs in fine-tuning for our proposed FAAL.
It can be seen that our method illustrates similar and stable
performances for different numbers of epochs.

C.7. Adversarial Fine-tuning/Training for
ResNet18 Model on CIFAR-100 Dataset

In this section, we explore the proposed FAAL into a more
challenging dataset, i.e. CIFAR-100 [8] with 100 categories.
It is noted that robust fairness in multi-class classification
with a large number of classes can indeed be more challeng-
ing and severe compared to small-class problems. Similarly,
the perturbation budget is set to ϵ = 8/255 on CIFAR-100
dataset.

The value of τ in our method is set to 0.05 for adversar-
ial fine-tuning for this dataset, and the learning rate is con-
figured from 0.01 in the first epoch and drops to 0.001 in



Figure 3. Class-wise robust Accuracy against AutoAttack after adversarially trained PRN-18 model on CIFAR-10 dataset

Table 4. Training from scratch with different methods on CIFAR-
10 dataset using Preact-ResNet18 model.

Adversarially Trained PRN-18 Model
Average Acc (Worst-class Acc) (%)

Clean AutoAttack

PGD-AT 82.72 (55.80) 47.38 (12.90)

TRADES 82.54 (66.10) 49.05 (20.70)

CFAAT 80.82 (64.60) 50.10 (24.40)

CFATRADES 80.36 (66.20) 50.10 (26.50)

WATTRADES 80.37 (66.00) 46.16 (30.70)

FAALAT 82.20 (62.90) 49.10 (33.70)

FAALTRADES 81.62 (68.90) 48.48 (33.60)

FAALTRADES−AWP 82.19 (72.00) 48.08 (35.00)

Table 5. More comparisons results for fine-tuning the WRN on
CIFAR-10

Adversarially Trained WRN-34-10 Model
Fine-Tuning

Epochs
Average Acc (Worst-class Acc) (%)

Clean AutoAttack

PGD-AT 2 86.07 (69.70) 52.46 (24.40)

+ Fine-tune with CFA 2 86.29 (69.50) 50.57 (24.70)

+ Fine-tune with WAT 2 85.30 (68.70) 53.15 (25.20)

+ Fine-tune with FAALAT 2 86.23 (69.70) 50.81 (35.70)

+ Fine-tune with FAALAT 4 86.56 (75.00) 50.57 (34.00)

+ Fine-tune with FAALAT 6 86.64 (74.20) 50.63 (35.80)

+ Fine-tune with FAALAT 8 86.32 (73.20) 50.30 (34.90)

the second epoch. In terms of the regular adversarial train-
ing, we following the experimental settings in WAT [9], ap-
plied the hyper-parameters including batch size 128; SGD
momentum optimizer with the initial learning rate of 0.1;
weight decay 2 × 10−4; ReLU activation function and
no label smoothing. We train the ResNet18 model from
scratch using different methods, including PGD-AT [10],
TRADES [16], CFA [14], WAT [9], FAAL with different

adversaries. All models are trained for 100 epochs with the
learning rate decaying by a factor of 0.1 at the 75-th and
90-th epochs, successively. we also start to facilitate the
proposed intermediate maximization (see Algorithm 1 lines
9-14) after the 75-th epoch with the only hyper-parameter τ
from 0.025 and enlarge it to 0.05 after the 90-th epoch.

Similarly, we reported the results of the average/worst-
class clean accuracy and AutoAttack accuracy in Tab. 6.
For fine-tuning, we compare our proposed method FAAL
with FRL-RWRM0.05 [15], it can be seen that FAAL is able
to achieve comparable to FRL-RWRM while reducing the
amount of learning epoch up to 40 times less (2 epochs vs.
80 epochs). For full adversarial training, we compare the re-
sults of FAAL compared to three baselines, i.e. TRADES,
CFA and WAT. It can be seen that FAATTRADES achieves
the highest worst-class robust accuracy (same as WAT),
meanwhile, it remains comparable results on the average
robustness without sacrificing the average/worst-class clean
accuracy too much.

Table 6. Result comparison of different methods on CIFAR-100
dataset using ResNet18 model.

Adversarially Trained RN-18 Model
Average Acc (Worst-class Acc) (%)

Clean AutoAttack

TRADES 54.57 (19.00) 23.57 (1.00)

+ Fine-tune with FRL-RWRM0.05 52.55 (22.00) 21.11 (2.00)

+ Fine-tune with FAALAT 58.50 (21.00) 21.91 (2.00)

+ Fine-tune with FAALAT−AWP 58.41 (19.00) 23.44 (2.00)

+ Fine-tune with FAALTRADES 54.96 (18.00) 22.71 (2.00)

+ Fine-tune with FAALTRADES−AWP 54.90 (18.00) 23.25 (2.00)

CFATRADES 55.57 (23.00) 24.56 (2.00)

WATTRADES 53.99 (19.00) 22.89 (3.00)

FAALAT 56.84 (16.00) 21.85 (3.00)

FAALTRADES 55.87 (21.00) 23.57 (3.00)



C.8. Hyper-parameter Selection

In our method, τ is the only extra hyper-parameter intro-
duced, it represents how much worse the distribution we
want to consider around the uniform distribution. Figure 4
plots the average and the average/worst-class clean accu-
racy and robust accuracy (against CW-100 attack) with the
increasing value of τ from 0. to 1, where FAALAT is used
to fine-tune a pre-trained TRADES model on the CIFAR-
10 dataset. We can see that with the increase of τ , there is a
trade-off tendency between the worst-class robustness and
average robustness, the improvement of worst-class robust-
ness will scarify some average robustness. By considering
all accuracy, we set up the value of 0.5 for τ in FAAL as the
default setting for CIFAR-10 dataset. A similar evaluation
is made on CIFAR-100 and we use τ = 0.05 by default.

Figure 4. Apply FAALAT for fine-tuning a TRADES model on
CIFAR-10 dataset

C.9. More Visualizations

Figure 5 visualizes the class-wise clean/robust accuracy be-
fore and after fine-tuning the WRN model, demonstrating
that after applying the proposed FAAL, the robust fairness
issue can be alleviated effectively. In Fig. 6, we plot the
class weights that the algorithms automatically learned dur-
ing training, we can see the weights vary significantly for
different batches (colored in red). The proposed FAAL di-
rectly adapts to these changes in every batch. The aver-
age learned weights (last image) in Fig. 6 also show a good
agreement with those unfair categories compared to the re-
sults in Fig. 5a. In addition, Figs. 7 to 10 gives more visu-
alisation results for fine-tuning across different models.
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(a) Original AT model trained with Uniform class weights (b) Fine-tuned FAAL model trained with CDAW weights

Figure 5. From (a) to (b): Fine-tuning the WRN-34-10 model with FAAL on CIFAR-10 dataset

Figure 6. The weights learned by FAAL during training on CIFAR-10 dataset: the first image represents the uniform distribution (orange);
the last one represents the averaged weights learned by FAAL during training (green); others represent weights learned for some specific
batches (red)



Figure 7. Class-wise robust Accuracy against AutoAttack after fine-tuning the PGD adversarially trained WRN model on CIFAR-10

Figure 8. Class-wise robust Accuracy against AutoAttack after fine-tuning the TRADES adversarially trained WRN model on CIFAR-10

Figure 9. Class-wise robust Accuracy against AutoAttack after fine-tuning the MART adversarially trained WRN model on CIFAR-10

Figure 10. Class-wise robust Accuracy against AutoAttack after fine-tuning the AWP adversarially trained WRN model on CIFAR-10
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