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This appendix is organized as follows.  Secs. 1
and 2 present the implementation details of our proposed
SceneWiz3D and baselines respectively. Sec. 3 lists all
the prompts used for evaluation. Sec. 4 provides a more
comprehensive comparison by computing metrics using dif-
ferent backbones. Sec. 5 justifies the usage of FID over dis-
parity map to assess the geometry of synthesized scenes.
We also show qualitative comparison and a collection of
diverse synthesized scenes on the anonymous website:
https://zqh0253.github.io/SceneWiz3D/.

1. Implementation Details of SceneWiz3D

Details about prompting the generative process. Tak-
ing advantage of our disentangled representation, we im-
plement a strategy that, during a specific ratio of iterations
(we use 0.3 in all our experiments), we discard all fore-
ground objects and exclusively render the background. For
the remaining iterations, we render the entire scene. Con-
sequently, the prompts for these two cases are slightly dif-
ferent. For instance, we utilize the prompt “a single boy
visiting a spacious aquarium” for the complete scene, while
“a spacious aquarium” for the background. Through this ap-
proach, we have observed significant mitigation of the Janus
problem.

Perspective guidance. We use VSD as our perspective
view guidance. We inherit the same camera sampling strat-
egy and annealed time schedule for score distillation as in
ProlificDreamer [9].

Panoramic RGBD guidance. Different from perspective
camera that is sampled on a sphere and looks at the middle
of the scene, our panoramic camera is placed at the center of
the scene with a small random offset. The magnitude of this
offset is limited to a maximum of ten percent of the scene
radius. Since the panoramic guidance does not consider ren-
dering Object of Interests (OOIs) in the panoramic view, it
lacks awareness of the presence of OOIs. To avoid conflicts
between the panoramic guidance and OOIs, we exclude the
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panoramic guidance from the initial 5000 iterations. Af-
ter the first 5000 iterations, we introduce the panoramic
guidance based on the rough scene layout obtained from
the perspective guidance. To ensure a smooth transition,
we gradually anneal the maximum time step from 0.5 at
5000 iterations to 0.3 at 20000 iterations. We render the
panoramic image in 256 X 512 resolution. Furthermore, we
also exclude the panoramic guidance during the last 5000
iterations. We have observed that incorporating it during
this stage can slightly compromise the visual quality of the
scene.

Particle Swarm Optimization. We observed that optimiz-
ing scene configuration with SDS loss tends to result in be-
ing trapped in local minima. Therefore, we propose the
use of Particle Swarm Optimization (PSO) as an alternative
method for updating scene configuration. PSO maintains a
swarm of particles and iteratively update them as:
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where pbest,; is the best position found by the i-th particle,
gbest is the best position found by all the particles in the
swarm, k,cy, co are hyper-parameters, and 71,79 are ran-
dom numbers controlling the intensity of exploration and
exploitation. This process is described in Algorithm 1. In
our experiments, a swarm consisting of 30 particles is main-
tained, and updates are performed over 50 iterations for
each PSO phase. We set the hyper parameters as &k = 0.8
and C1 = Cy = 0.1.

Depth regularizer L4.,. We use the official dpt-beit-large-
512 version of MiDaS' to estimate the target depth for cal-
culating the depth regularizer term: Snglerﬂl% |sIq+ b — I4]|2.

As MiDaS’s result is up-to-scale, we therefore use a scale s
and bias b term to align the rendered disparity map I to the

Uhttps://github.com/isl-org/MiDaS
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Algorithm 1 PSO for scene config update

Require: I D> Number of particles
Require: N > Number of time steps
Require: f ( ) D> Scoring (CLIP similarity) function

Require: k, c1, co
1: fort =0tol —1do
2: a;[0] «+ RANDOM

> Hyper parameters

> Random initial solution

3: V; [0] < RANDOM > Random initial velocity
4: pbest[z] — a; [O] D> Initial local best
5: end for

6: fori =0to ] — 1do

7: if f(pbest[i]) > f(gbest) then

8: gbest < pbest; D> Initial global best
9: end if

10: end for

12: forn=0to N —1do
13: fort:=0tol —1do

14: T < RAND(O7 1) D> Exploration intensity
15: ro < RAND(O7 1) > Exploitation intensity
16: \'Z [Tl + 1} — kX v; [TL] > Update velocity

+c1 X 11 X (pbest[i] — a;[n])
+ca X 1o X (gbest — a;[n])

17: a; [’I’L + 1] — a; [’I’L] +v; [?’l + 1] > Update solution
18: if f(a;[n +1]) > f(pbest[i]) then

19: pbest [Z} — a; [n + 1} D> Update local best
20: end if

21: end for

22: fori =0to —1do

23: if f(pbest[i]) > f(gbest) then

24: gbest < pbesti > Update global best
25: end if

26: end for

27: end for

predicted disparity map I;. The optimal scale s and bias b
term has closed-form solution:
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After computing the optimal scale and bias, we then cal-
culate the Mean Square Error (MSE) between aligned ren-
dered disparity map sI; + b and the predicted disparity map
fd as the loss term.

Coefficients.  Apers, Apano, and Agep in 22 are set to
1,107, 10* for all experiments.

2. Implementation Details of Baselines

ProlificDreamer [9]. We adopt the implementation from
threestudio® which achieves a similar visual quality to the
results in the original paper. We inherit the camera sampling
scheme and density initialization as proposed in the original
paper. We only render 64 x 64 resolution images for the
first 5000 iterations, and then render in 512 x 512 images
for another 20000 iterations.

DreamFusion [6]. We implement DreamFusion based on
the ProlificDreamer’s implementation specified above. We
preserve all the configs, except for the modification of the
guidance term from VSD to SDS.

Text2room [3]. We train text2room using our text prompts,
following its official guidance. We generated panoramic im-
ages and depth maps using Blender. As the mesh color is
assigned to each vertex, we rendered the panoramic images
without additional lighting.

LDM3D [7]. We follow the official implementation of
LDM3D. We first synthesize a panoramic RGBD image by
LDM3D-pano. Then we use TouchDesigner to convert it
into a 3D mesh for rendering novel-view images. Fig. Al
illustrates the process in details. The rendering pipeline pro-
cesses the input depth map as a height map to deform a 3D
sphere with a radius of 1, using the input image as the tex-
ture map for the sphere. The degree of deformation is con-
trolled by the ‘displacement scale’ parameter in the Phong
shader, which we empirically set to 1 to minimize distortion
in perspective view rendering. We position the camera on
a circle with a radius of 0.4 and ensure it always points to-
wards the scene’s center. Rendering RGB and depth images
for the perspective view is straightforward using the ren-
derer TOP. For panoramic views, we configure the renderer
TOP to produce dual paraboloid images and then use a pro-
jection TOP to convert them into equirectangular panorama
images.

3. Prompt List Used for Evaluation

During evaluation, each method generates scenes based on
10 indoor scene prompts. Here we list the prompts:

¢ abedroom, realistic photo style, 4k
¢ a dining room, realistic detailed photo, 4k
* aliving room, realistic detailed photo, 4k

* amuseum exhibition hall displaying sculptures, realis-
tic detailed photo, 4k

* a car exhibition center, realistic photo style, 4k

* astudy room, realistic detailed photo, 4k

Zhttps://github.com/threestudio-project/threestudio#prolificdreamer
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Figure A1. Rendering pipeline of TouchDesigner for LDM3D.

Table A1l. Metrics computed with diverse versions of base mod-
els.

CLIP-AP; | Depth-align
EVA-CLIP BLIP ZoeDepth  Depth-Anything
DreamFusion 93.2 89.3 0.30 0.21
ProlificDreamer 91.0 84.5 0.36 0.27
Text2room 73.3 71.9 0.41 0.26
LDM3D 81.8 79.9 0.32 0.22
Ours 94.2 92.2 0.18 0.19

* atable tennis room, realistic detailed photo, 4k
* a washing room, realistic detailed photo, 4k
* aclassroom, realistic detailed photo, 4k

* a computer laboratory, realistic detailed photo, 4k

4. Metrics computed with different backbones

CLIP similarity and depth estimation are both used during
the optimization and evaluation process. To ensure a fair
comparison, we incorporate different base models to com-
pute the metrics. Concretely, we use EVA-CLIP [8] and
BLIP [4] (instead of CLIP)’s image encoders for measur-
ing image-text similarity, and two state-of-the-art monoc-
ular depth prediction models, ZoeDepth [1] and Depth-
Anything [10] (instead of MiDaS) for depth alignment esti-

mation. Tab. A1 shows that our method consistently outper-
forms all baselines, when evaluated using base models that
were not utilized during optimization.

5. Fréchet Inception Distance over Disparity
Map

As we observe severe visual artifacts exist in rendered dis-
parity map of baseline methods (floating, distortion, blurri-
ness, and discontinuity), we would like to use Fréchet In-
ception Distance (FID) to assess the image quality. FID is
commonly used to evaluate generators trained on real-world
images. It utilizes a backbone network that is pretrained on
general vision tasks to extract features from each image. By
comparing the feature distributions of real dataset images
and synthesized fake images, FID quantifies the divergence
between these two distributions. Naturally, a question arises
regarding the robustness of the backbone network, specifi-
cally Inception-v3 in our case, to provide meaningful fea-
tures that can effectively differentiate between real and fake
disparity maps.

To answer this question, we conduct an experiment to
verify whether FID exhibits a positive correlation with
changes in disparity image quality. To approximate vari-
ations in image quality, we test different types of degradata-
tions of the real data, proposed in [2]: Gaussian noise is
used to approximate the floating artifacts, Gaussian blur
is used to approximate blurriness, Swirl is used to approx-
imate global distortion, and Implanted black rectangles



is used to approximate discontinuity and hollows. We use
NYU-dep-v2 [5] as the ground truth dataset. This dataset
and the images generated from 10 prompts have significant
domain shift globally (e.g different number of objects and
different types of scenes). On the other hand local pattern
such as edges and surfaces should be pretty similar in these
two datasets. To this end we should select the metric that is
sensitive to local degradation types, such as Gaussian blur
and Gaussian noise, but largely ignore global transforma-
tions such as Swirl. We first test the features from different
layers of Inception-v3, including 64, 192, 2048 channels.

As shown in Fig. A3, initial feature maps with 64 chan-
nels is not sensitive to Gaussian blur. On the other hand,
global features with 2048 channels exhibit an overly intense
response to Swirl. To this end we opt to utilize features
with 192 channels for calculating the FID in all of our ex-
periments, which adequately captures both local transfor-
mation, Gaussian blur and Gaussian noise, but is almost
indifferent for global Swirl transformation.

Finally, we shown in Fig. A2, that FID with 192 channels
adequately captures different disturbance levels. This justi-
fies our choice of 192 features FID as an evaluation metric.
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Figure A2. FID is evaluated for upper left: Gaussian noise, upper right: Gaussian blur, bottom left: swirled images, bottom right:
implanted black rectangles. The disturbance level rises from zero and increases to the highest level. The FID captures the disturbance level
very well by monotonically increasing.
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Figure A3. The FID score is calculated for various feature levels, including 64, 192, and 2048 channels. Among these, the mid-level
feature with 192 channels exhibits a favorable balance between different types of noise.



