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Supplementary Material

In this supplementary material, we present more imple-
mentation details and additional visual results. We first
provide training details of our ATD and ATD-light model
in Sec. A. Then, additional experimental results are shown
in Sec. B to verify the efficacy of ATD. Finally, we present
more illustrations of AC-MSA and visual examples by dif-
ferent models in Sec. C.

A. Training Details
ATD. We follow previous works [3, 10] and choose DF2K
(DIV2K [15] + Flickr2K [11]) as the training dataset for
ATD. Then, we implement the training of ATD in two
stages. In the first stage, we randomly crop low-resolution
(LR) patches of shape 64× 64 and the corresponding high-
resolution (HR) image patches for training. The batch size is
set to 32, while commonly used data augmentation tricks in-
cluding random rotation and horizontal flipping are adopted
in our training stage. We adopt AdamW [12] optimizer with
β1 = 0.9, β2 = 0.9 to minimize L1 pixel loss between HR
estimation and ground truth. For the case of ×2 zooming
factor, we train the model from scratch for 300k iterations.
The learning rate is initially set as 2 × 10−4 and halved at
250k iteration milestone. In the second stage, we increase
the patch size to 96× 96 for another 250k training iterations
to better explore the potential of AC-MSA. We initialize the
learning rate as 2× 10−4 and halve it at [150k, 200k, 225k,
240k] iteration milestones. We omit the first stage for ×3
and ×4 models to save time, only adopting the second stage
for finetuning these models based on the well-trained ×2
model. To ensure a smooth training process for the token
dictionary, we set warm-up iterations at the beginning of
each stage. During this period, the learning rate gradually
increases from zero to the initial learning rate.

ATD-light. To make fair comparisons with previous SOTA
methods, we only employ DIV2K as training dataset. Same
as ATD and previous methods, we train the ×2 model from
scratch and finetune the ×3 and ×4 models from the ×2
one. Specifically, we train the ×2 ATD-light model for 500k
iterations from scratch and finetune the ×3, ×4 model for
250k iterations based on the well-trained ×2 model. The
larger patch size used for ATD is not applied to ATD-light.
The initial learning rate and iteration milestone for halving
learning rate are set as 5× 10−4, [250k, 400k, 450k, 475k,
490k] for ×2 model and 2×10−4, [150k, 200k, 225k, 240k]
for ×3, ×4 models. The rest of the training settings are kept
the same as ATD.

Table B.1. Model size and computational burden comparisons
between ATD and recent state-of-the-art methods.

Model Params FLOPs Urban100 Manga109
PSNR SSIM PSNR SSIM

CAT-A 16.6M 360G 27.89 0.8339 32.39 0.9285
HAT 20.8M 412G 27.97 0.9368 32.48 0.9292
ATD 20.3M 417G 28.17 0.8404 32.63 0.9306

B. More Experimental Results

B.1. Analysis on Model Size and Computational
Burden.

In this subsection, we analyze the model size of the pro-
posed ATD model. As shown in Tab. B.1, we present the
accuracy of image restoration (PSNR), model size (number
of parameters) and computational burden (FLOPs) compar-
ison between ATD and recent state-of-the-art models on
image SR task. Results in the table clearly demonstrate that
the proposed ATD model helps the network achieve a bet-
ter trade-off between restoration accuracy and model size.
Our ATD method achieves better SR results with compara-
ble model size and complexity to HAT. Furthermore, ATD
outperforms CAT-A by up to 0.22 dB with only 10% more
parameters and FLOPs.

B.2. Image Super-Resolution Results.

In this subsection, we present the complete image super-
resolution results in Tab. B.2 and Tab. B.3. In addition to
producing remarkable results in ×2 and ×4 SR, ATD and
ATD-light also achieve impressive improvements of up to
0.38 dB in the ×3 case.

C. More Visual Examples

C.1. More Visualization of AC-MSA.

In this subsection, we provide illustrations of the Categorize
operation and more visual examples of categorization re-
sults in Fig. C.1 and Fig. C.2. We visualize only a few
categories for each input image for simplicity. In the
Categorize operation, pixels are first sorted and classified
into θ1,θ2, · · · ,θM based on the value of attention map.
Then, each category is flattened and concatenated sequen-
tially. Although certain pixels not belonging to the same
category may be assigned to the same sub-category, it has
almost no impact on performance. This is because the num-
ber of misassignments will not exceed the dictionary size



Table B.2. Quantitative comparison (PSNR/SSIM) with state-of-the-art methods on classical SR task. The best and second best results are
colored with red and blue.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [11] ×2 42.6M 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN [19] ×2 15.4M 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [6] ×2 15.7M 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN [14] ×2 63.6M 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IPT [2] ×2 115M 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [10] ×2 11.8M 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9433 39.92 0.9797
EDT [9] ×2 11.5M 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800
CAT-A [4] ×2 16.5M 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
ART [17] ×2 16.4M 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
HAT [3] ×2 20.6M 38.63 0.9630 34.86 0.9274 32.62 0.9053 34.45 0.9466 40.26 0.9809
ATD (ours) ×2 20.1M 38.61 0.9629 34.92 0.9275 32.64 0.9054 34.73 0.9476 40.35 0.9810

EDSR [11] ×3 43.0M 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN [19] ×3 15.6M 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN [6] ×3 15.9M 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN [14] ×3 64.2M 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IPT [2] ×3 116M 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR [10] ×3 11.9M 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
EDT [9] ×3 11.6M 34.97 0.9316 30.89 0.8527 29.44 0.8142 29.72 0.8814 35.13 0.9534
CAT-A [4] ×3 16.6M 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
ART [17] ×3 16.6M 35.07 0.9325 31.02 0.8541 29.51 0.8159 30.10 0.8871 35.39 0.9548
HAT [3] ×3 20.8M 35.07 0.9329 31.08 0.8555 29.54 0.8167 30.23 0.8896 35.53 0.9552
ATD (ours) ×3 20.3M 35.15 0.9331 31.15 0.8556 29.58 0.8175 30.52 0.8924 35.64 0.9558

EDSR [11] ×4 43.0M 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN [19] ×4 15.6M 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [6] ×4 15.9M 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN [14] ×4 64.2M 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IPT [2] ×4 116M 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [10] ×4 11.9M 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT [9] ×4 11.6M 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.05 0.9254
CAT-A [4] ×4 16.6M 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
ART [17] ×4 16.6M 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 32.31 0.9283
HAT [3] ×4 20.8M 33.04 0.9056 29.23 0.7973 28.00 0.7517 27.97 0.8368 32.48 0.9292
ATD (ours) ×4 20.3M 33.14 0.9061 29.25 0.7976 28.02 0.7524 28.22 0.8414 32.65 0.9308

Table B.3. Quantitative comparison (PSNR/SSIM) with state-of-the-art methods on lightweight SR task. The best and second best results
are colored with red and blue.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN [1] ×2 1,592K 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN [7] ×2 694K 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A [8] ×2 548K 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [13] ×2 756K 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
SwinIR-light [10] ×2 910K 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ELAN [18] ×2 582K 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
SwinIR-NG [5] ×2 1181K 38.17 0.9612 33.94 0.9205 32.31 0.9013 32.78 0.9340 39.20 0.9781
OmniSR [16] ×2 772K 38.22 0.9613 33.98 0.9210 32.36 0.9020 33.05 0.9363 39.28 0.9784
ATD-light (Ours) ×2 753K 38.29 0.9616 34.10 0.9217 32.39 0.9023 33.27 0.9375 39.52 0.9789

CARN [1] ×3 1,592K 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN [7] ×3 703K 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
LAPAR-A [8] ×3 544K 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet [13] ×3 765K 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -
SwinIR-light [10] ×3 918K 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
ELAN [18] ×3 590K 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478
SwinIR-NG [5] ×3 1190K 34.64 0.9293 30.58 0.8471 29.24 0.8090 28.75 0.8639 34.22 0.9488
OmniSR [16] ×3 780K 34.70 0.9294 30.57 0.8469 29.28 0.8094 28.84 0.8656 34.22 0.9487
ATD-light (ours) ×3 760K 34.74 0.9300 30.68 0.8485 29.32 0.8109 29.17 0.8709 34.60 0.9506

CARN [1] ×4 1,592K 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN [7] ×4 715K 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A [8] ×4 659K 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet [13] ×4 777K 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -
SwinIR-light [10] ×4 930K 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ELAN [18] ×4 582K 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
SwinIR-NG [5] ×4 1201K 32.44 0.8980 28.83 0.7870 27.73 0.7418 26.61 0.8010 31.09 0.9161
OmniSR [16] ×4 792K 32.49 0.8988 28.78 0.7859 27.71 0.7415 26.65 0.8018 31.02 0.9151
ATD-light (Ours) ×4 769K 32.63 0.8998 28.89 0.7886 27.79 0.7440 26.97 0.8107 31.48 0.9198
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Figure C.1. An illustration of the Categorize operation. With the
attention map obtained by TDCA operation, we assign a category
index to each pixel based on the highest similarity between the
pixel and the token dictionary.

M = 128, which is much less than the number of sub-
categories HW/ns.

The following visual examples further demonstrate that
the categorize operation is capable of grouping similar tex-
tures together. We can see that the categorize operation
performs well on various types of image, including either
natural or cartoon images.

C.2. More Visual Comparisons.

In this subsection, we provide more visual comparisons be-
tween our ATD models and state-of-the-art methods. As
shown in Fig. C.3 and Fig. C.4, ATD and ATD-light both
yield better visual results. Specifically, ATD recovers sharper
edges in img011 and img027, while the output of other meth-
ods remains blurry. Moreover, most existing methods fail
to reconstruct correct shape of the black blocks in Don-
burakokko. In contrast, the output of ATD-light is more
accurate to the rectangular shape in the ground truth.
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Figure C.2. An illustration of the Categorize operation, along with several visual examples of the categorization results. The white
area in each binarized image represents a single category. Pixels in each category are flattened and then sorted for further dividing into
sub-categories. These categorization results indicate that our AC-MSA is capable of dividing the image by the class of each pixel. Therefore,
areas with similar texture (for example, sky, grass, roof) are grouped into the same category.
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Figure C.3. Visual comparisons between ATD and state-of-the-art classical SR methods.
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Figure C.4. Visual comparisons between ATD-light and state-of-the-art lightweight SR methods.
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