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Supplementary Material

This document provides detailed discussions on key defi-
nitions (Section A1), implementation details of three PPFRs
in the main manuscript (Section A2), privacy inference
analysis concerning both unprotected state-of-the-art face
recognition systems (Section A3) and their white-box set-
tings (Section A4). Additionally, it includes ablation stud-
ies (Section A5), quiz-based subjective evaluation (Section
A6), and a collection of supplementary generated face im-
ages (Section A7).

A1. Vocabulary

Target system ST . This is a privacy-preserving biometric
recognition system that is targeted by an attacker. In this
system, the recognition results are computed on the server
side and sent back to clients, and the results are often rep-
resented as similarity scores (indicating the similarity be-
tween the query face and the enrolled face). Clients set their
thresholds based on their specific requirements to obtain fi-
nal recognition decisions locally.

Validation system SV . We consider another face recog-
nition system called the validation system to evaluate the
degree of privacy disclosure revealed by the generated face
images from the ST . SV could be either the privacy-
protecting face recognition systems (i.e., Duetface, DCTDP,
and Partialface) or unprotected face recognition systems
without privacy protection (i.e., ArcFace, MagFace, and
AdaFace).

’Mode’ in prior space construction. The term mode
typically refers to the modes of the data distribution in
GANs (see [1]), which relates to the variety and diversity
of samples that a GAN can generate. However, GANs face
challenges in capturing all the modes or diverse patterns
present in the data distribution. We adopt the concept of
an image prior distribution to mitigate mode collapse, in-
spired by [6]. Each image prior is uniquely characterized
by a parameter, denoted as θ, and is referred to as a mode to
align with GAN notation.

Query efficiency. In our 1k1c assumption, we consider
the attacker’s behavior to mimic that of a regular user. Typi-
cally, one query attempt is made per user inputting a single-
face image to access the system. Ideally, we aim to min-
imize these attempts. In our experiments, the optimiza-
tion iterations necessary in Map2V are regarded as query
counts. This simulates the adversary’s actions in real attack
scenarios, where reconstructed images are used to query
ST . Hence, query efficiency refers to the number of query
counts required to generate the final face images.

Generalizability. The ability of a privacy validation

method to effectively perform on previously unseen ver-
ification models and face images of the target identity is
referred to as generalizability. In other words, a privacy
validation method with high generalizability can assess the
privacy of various target systems and achieve consistently
high privacy scores across different validation systems, in-
cluding PSI and PSII.

A2. Implementation details of PPFRs

Table A1. Face recognition accuracy on different datasets.

Method LFW CFP-FP AgeDB CALFW
DuetFace 99.62 93.20 96.68 95.47
DCTDP 99.63 93.17 95.82 95.27

PartialFace 98.53 89.51 90.10 91.08

We conducted privacy validation on three different
SOTA PPFRs, namely DuetFace [4], DCTDP [3], and Par-
tialFace [5]. Since these methods do not have publicly avail-
able pre-trained models, we trained these models as closely
as possible in this work. The specific details are as follows.

DuetFace: as a privacy-preserving face recognition sys-
tem, a face image is split by channel frequency and used
to co-train the client-side model and server-side model. We
use the adapted ResNet50 with an improved residual unit
(IR-50) as the server-side backbone and the MobileFaceNet
as the client-side backbone, and they are trained with MS-
celeb-1m [2] as the training set. To be fair, the latter two
methods are trained on the same dataset.

DCTDP: as a face recognition system, we use ResNet50
backbone as the baseline model and ArcFace as a loss func-
tion. In order to limit face recognition service providers
to only learn classification results with a certain confidence
level and fail to recover the original image, a face image is
first converted to the frequency domain the DC channel is
removed, and then different privacy budgets are set for dif-
ferent elements combined with differential privacy. In order
to achieve a similar recognition performance as the original
paper, the initial values of the learnable budget allocation
parameters are set to 2 and the learning rate is 0.001. Other
Settings are consistent with the original paper.

PartialFace: a face image is transformed to frequency
channels using the Discrete Cosine Transform (DCT) and
then human-perceivable low-frequency components are
pruned. Moreover, a randomized strategy is introduced to
enhance privacy and impede easy recovery. We employ
an IR-50 backbone trained on the MS-celeb-1m dataset
and relevant parameters are set as in the original paper (



i.e. (σ, s, r,m, n) = (10, 36, 18, 6, 6) and randomly select
S, P ).

The recognition performance on different datasets of
adopted PPFRs is shown in Table A1.

A3. Privacy validation on unprotected face
recognition using Map2V

In addition to the validation performed on PPFR in the main
text, we utilized our proposed Map2V method to assess the
vulnerability of the SOTA face recognition systems. The
Map2V employed the same parameter settings as described
in the main content, conducting privacy inference on the
ArcFace, MagFace, and AdaFace systems under 1k1c set-
tings. The results in Table A2 indicate that the average PSI
exceeds 90%, and the average PSII is around 80%. This
strongly suggests a significant privacy leakage risk in these
face recognition models. Furthermore, it further demon-
strates the strong generalizability of our proposed method
when facing both protected and unprotected face recogni-
tion systems.

A4. Privacy validation on PPFRs under white-
box settings using Map2V

We also conducted privacy validation on the target system
in a white-box setting (assuming that there is a gradient to
be used). The results in Table A3 demonstrate that images
reconstructed from the target system consistently achieve
privacy scores of over 90% for PSI and around 80% for
PSII across various SV . Taking the target system DuetFace
as an example, after obtaining a face image from DuetFace
on LFW, the privacy score PSI of matching this face with
other PPFR systems is 94.35% and 94.64% for DCTDP and
PartialFace, respectively. In the most challenging scenario
for PSII, matching this face with other PPFR systems en-
rolled with a new face leads to PSII scores of 81.79% and
81.93% for DCTDP and PartialFace, respectively. These
results showcase that the proposed Map2V is capable of
achieving accurate privacy inference under white-box set-
tings.

A5. Additional ablation studies of Map2V
For ablation, we compared the impact of different param-
eter choices on the results of privacy inference, including
parameters u, top-k, and learning rate α. To improve ex-
perimental efficiency, we conducted privacy validation on
DuetFace, DCTDP, and PartialFace using the LFW dataset
and calculated average privacy scores PSII when attacking
the same model. This is sufficient to illustrate the impact
of different parameters on the proposed MAP2V. The re-
sults are shown in the Fig. A2. We can observe that in
our privacy validation scenario, the combination of u=16,

k = 5 and α=0.1 emerges as the optimal choice, striking a
balance between maintaining the highest privacy score and
visual quality. These parameters may require appropriate
adjustments when validating a new PPFR system.

A6. Quiz-based subjective evaluation
Quiz: This quiz is designed based on the LFW face dataset.
The quiz consists of 30 multiple-choice questions, each fea-
turing a reconstructed image and five options, including one
target option, three distractors, and a ’none’ option. Re-
spond to the question: Which option below is most similar
to the given image? (see Figure A3)

Subjective privacy score (SPS). In assessing the simi-
larity between reconstructed images and target images, we
calculated the subjective privacy score (SPS) for each re-
constructed image. The calculation method for this score is
as follows:

SPS =
Number of observers selecting target images

Total number of observers
×100%

(1)
The overall subjective privacy score (SPS) for the recon-

structed images is obtained by computing the average of all
individual scores.

Subjective Recognition Rates(SRR). To assess whether
the reconstructed face images, while resembling the target
images, also resemble other identities, we established sub-
jective recognition rates.

SRR =
Number of observers selecting IDi

Total number of observers
×100% (2)

A7. Additional demonstration of the results of
Map2V

In order to facilitate a comparison with the native privacy
validation methods under the 2k2c assumption from PPFR
works of literature, we have provided an additional visual
demonstration of generated face images, as shown in the
Fig.A4.

It is worth noting that the reconstructed face images un-
der the 1k1c assumption using the proposed Map2V are sig-
nificantly superior to the results of auto-encoders in PPFR
works. This echoes our experimental analyses in Sec. 4.4.
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Table A2. Privacy scores (%) against different unprotected face recognition system on LFW and CelebA datasets under the 1k1c scenario.

Reconstructed from ST

Dataset Attack ArcFace MagFace AdaFace Average
to SV PSI PSII PSI PSII PSI PSII PSI PSII

LFW
ArcFace 97.76 91.14 88.26 71.26 85.76 66.61 90.59 76.34
MagFace 96.30 83.54 96.80 87.95 86.80 70.55 93.30 80.68
AdaFace 96.06 77.90 89.56 75.81 98.31 87.98 94.64 80.56

CelebA
ArcFace 96.73 86.78 90.48 72.90 90.23 75.12 92.48 78.27
MagFace 96.73 82.45 96.23 82.42 93.73 78.73 95.56 81.20
AdaFace 93.57 75.67 88.57 70.70 96.57 83.29 92.90 76.55

Table A3. Privacy scores (%) against different validation systems on LFW and CelebA dataset under the white-box scenario.

Reconstructed from ST

Dataset Attack DuetFace DCTDP PartialFace Average
to SV PSI PSII PSI PSII PSI PSII PSI PSII

LFW

ArcFace 96.51 81.95 93.51 76.72 91.76 69.83 93.93 76.17
MagFace 92.80 81.69 90.05 78.77 92.30 75.78 91.72 78.75
AdaFace 93.81 79.51 87.56 75.46 91.91 72.23 91.09 75.73
DuetFace 97.46 92.01 94.55 81.62 95.58 79.90 95.86 84.51
DCTDP 94.35 81.79 96.35 89.59 90.35 75.33 93.68 82.24

PartialFace 94.64 81.93 89.39 78.17 98.89 96.06 94.31 85.39

CelebA

ArcFace 95.23 81.11 94.73 78.59 95.23 81.65 95.06 80.45
MagFace 94.48 82.27 93.73 80.28 96.48 84.40 94.90 82.32
AdaFace 91.57 76.80 89.82 74.58 93.57 79.04 91.65 76.81
DuetFace 97.94 88.45 95.08 80.55 95.26 83.64 96.09 84.21
DCTDP 95.27 81.59 96.77 86.69 92.52 79.94 94.85 82.74

PartialFace 93.76 81.11 90.04 77.67 97.79 90.69 93.86 83.16

Target 

A: Reconstructed from DuetFace   B: Reconstructed from DCTDP   C: Reconstructed from PartialFace 

A 

B 

C 

Figure A1. More examples of reconstructed faces from the CelebA dataset for three SOTAs under white-box settings. The first row is the
target image for the adversary’s attack, A to C shows the results of Map2V.
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Figure A2. Privacy scores of different choice of parameter: u and ϵ for zeroth-order gradient estimation. When varying a single hyperpa-
rameter, other hyperparameters are fixed to the optimal value (u = 16, k = 5, α = 0.1).
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Figure A3. Quiz of Subjective evaluation. Each row represents a question, totaling 30. Q is the provided reconstructed image, and A, B,
C, D are the target option and three distractor options placed randomly, while E is the ’none’ option.
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Figure A4. More exemplar face images reconstructed from SOTA PPFRs. The recovery results of proposed Map2V under 1k1c settings
(2nd row) outperform the rest under 2k2c settings (1st row).
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