
Versatile Navigation under Partial Observability via Value-guided Diffusion Policy

Supplementary Material

6. Network Architectural and Experimental

Specification

Expert trajectory padding. To ensure alignment among

different trajectories within expert demonstrations for closed-

loop plan generation, we employ a padding strategy. Specif-

ically, for the action trajectory, τa, we append Th steps of

the termination action, Done, to its end, aligning with the

prediction horizon defined in Sec. 3.2. This trajectory is con-

ditioned on the partial environmental map e, corresponding

to the timestep of the sequence’s initial action. Thus, we

pad at the end to match the prediction horizon’s length. This

approach, also functioning as a form of data augmentation,

effectively addresses the sparsity of the Done action in expert

demonstrations, essential for training the policy to execute

Done accurately and timely. These adjustments ensure con-

sistent alignment across τe and τa in training data, with the

same approach adopted during evaluation to condition the

diffusion models properly.

Partial maps. Each partial map comprises three channels.

The first marks observed obstacles as 1s while marking free

spaces and unobserved areas as 0s. The second inversely

marks observed free spaces as 1s and the others as 0s. The

third marks the goal as 1 if having observed it; otherwise,

the channel is all-zero. We follow Wilson’s methodology

[35] to generate these maps. The starting point and target are

selected uniformly from free cells, always ensuring a clear

path between them. Under partial observability, the initial

map presents minimal environmental information akin to the

agent’s first observation. As the exploration proceeds, the

agent uncovers more areas and incorporates them into the

progressively more complete map.

Bit encoding. We can represent discrete data from an al-

phabet of size K variables with n = ⌈log2 K⌉ bits, in the

form of {0, 1}n. This discretization drives previous work

to remodel continuous diffusion models to accommodate

discrete data and state spaces. Nonetheless, Chen et al. put

forward an alternative strategy, where binary bits, {0, 1}n,

are converted to real numbers, Rn, thus making them suit-

able for continuous diffusion models. They refer to these

real numbers as “analog bits”, which are processed as real

numbers despite mimicking the dual nature of binary bits.

For sample generation, the approach remains the same as in

continuous diffusion models but incorporates an additional

step of quantization at the end, through which the resultant

analog bits are thresholded. Consequently, this transforms

the analog bits back into binary bits, ready to be turned into

their original discrete or categorical variables.

Plan generation module. Our plan generation module em-

ploys a diffusion model anchored on a U-Net architecture.

Each section of the U-Net, including the downward, mid-

dle, and upward modules, contains residual blocks merged

with one-dimensional convolution neural networks (CNNs).

Tab. 4 showcases the specific layout of the plan generation

module. The module takes in an expert action trajectory,

with channels equal to the number of bits used to encode

the action sequence (set to 4 for both domains) and length

equal to Th, serving as the input for the initial residual block.

The hidden layers progressively widen the feature map chan-

nels to 256, 1024, and 2048 along the downsampling path.

This map then navigates a bottleneck stage without altering

its shape. In the upsampling path, the feature map is first

concatenated with its counterpart stored during the downsam-

pling path. Consequently, the input dimension for each stage

of the upward module is effectively doubled. The final con-

volutional block of the upward module restores the output

from a 256-channel feature map to a valid action trajectory.

Note that no downsampling or upsampling is involved in the

last stage of both paths.

An integral part of the plan generation module is an en-

vironment encoder, which converts a partial environment

map at the current timestep, e(t), into a low-dimensional

embedding. This encoder comprises three convolutional

blocks, succeeded by a global average pooling layer and

two fully-connected layers. Each convolutional layer is con-

figured with a kernel size of 3, a stride and padding size

of 1, and output channels set to 128, 256, and 256, respec-

tively. We apply group normalization, with eight groups,

when conducting the convolutions. The global average pool-

ing layer flattens the result into a one-dimensional vector

of length 256. The two fully connected layers, with a di-

mension of 256×256, encode the features extracted from

the map into an embedding as the condition for conditional

diffusion. This embedding is subsequently incorporated into

the one-dimensional diffusion model.

We leverage Feature-wise Linear Modulation (FiLM) to

model the conditional distribution p(τa,(t)|e(t)). To this

end, we set the output channels as twice the output of the

residual block. This configuration allows us to treat half

of the conditional embedding as scale and the other half

as bias, facilitating a linear operation on the output of the

first convolutional block within the residual block and then

going through the rest. Adopting FiLM enables the diffusion

policy to adjust its behavior based on specific features of the

input partial environmental map, facilitating more effective

learning of the action trajectory and consequently boosting

its performance.

Value function. Within the value function module detailed

Down Middle Up

Input 8×4 2×2048 2×4096

Stage 1

Conv1d: [3, 1, 256]×2 Conv1d: [3, 1, 2048]×2 Conv1d: [3, 1, 1024]×2

Res1d: [3, 1, 256]×1 Res1d: [3, 1, 2048]×1 Res1d: [3, 1, 1024]×1

Downsample: [3, 2, 1024]×1 Upsample: [4, 2, 1024]×1

Stage 2

Conv1d: [3, 1, 1024]×2 Conv1d: [3, 1, 2048]×2 Conv1d: [3, 1, 256]×2

Res1d: [3, 1, 1024]×1 Res1d: [3, 1, 2048]×1 Res1d: [3, 1, 256]×1

Downsample: [3, 2, 2048]×1 Upsample: [4, 2, 256]×1

Stage 3
Conv1d: [3, 1, 2048]×2 Conv1d: [3, 1, 256]×1

Res1d: [3, 1, 2048]×1 Conv1d: [1, 1, 4]×1

Output 2×2048 2×2048 8×4

Table 4. U-Net constitution of the plan generation module. Suppose the input action sequence length is 8 and has 4 channels. 4 is the number

of bits used to encode each action. All our network’s foundational components except upsampling are constructed using one-dimensional

convolutional layers. Upsampling utilizes one-dimensional transposed convolutional layers. Within a convolutional layer, we designate the

kernel size K, stride S, and target channels C in the form of [K,S,C]. Additionally, we specify the input and output channels corresponding

to each convolutional layer, which denotes the number of filters used. Note that the final convolutional block is regular instead of residual.

Hyperparameter Value

Dataset (vary with env size)

Minimal episode length (15×15) 16

Maxmal path length (15×15) 50

Diffusion model

Observation horizon (To) 2

Prediction horizon (Th) 4

Execution horizon (Ta) 2

Timestep embedding dimension 256

Diffusion steps 32

EMA decay 0.995

Number of plan candidates 24

Value function

Value iteration rounds (K) 60

Discount factor (γ) 0.99

Training

Batch size 32

Gradient accumulation steps 2

Initial learning rate (diffusion policy) 2e-4

Initial Learning rate (value function) 0.005

Optimizer RAdam

Total training epochs 60

Training steps per epoch 10000

Table 5. Hyperparameters for training the diffusion-based planner

and the value function estimator, respectively.

in Sec. 3.3, the motion transition function T̂m, valid action

reward function R̂m, and invalid action reward function

R̂f each consist of a convolutional kernel with A filters.

Notably, T̂m is initialized as a Gaussian distribution with

a Softmax function applied over the height and width, i.e.,

the action space S, to ensure a valid probability distribution.

To enhance learning flexibility and representation, T̂m has

independent weights for belief update and value iteration.

Both R̂m and R̂f are initialized to zero, and dot products in

Eq. (2) and Eq. (3) are implemented as convolutions using

these kernels. The action embeddings Âlogit and Âthresh are

concurrently learned through CNNs. Specifically, the output

action embedding comprises (|A| + 1) channels, with the

first |A| channels serving as Âlogit and the last one acting

as Âthresh. We train the model to minimize the discrepancy

between Âlogit and the expert demonstration, a∗, to reliably

estimate the logarithmic probabilities associated with each

action being taken.

Parallel plan candidate generation. One of our goals in

adopting trajectory-level behavior synthesis for multi-step

decision-making is to improve planning efficiency. However,

introducing sampling variability, where the diffusion policy

produces multiple plans for selection based on value func-

tion, ironically reintroduces inefficiency. This is because,

at each planning step, the model must iteratively generate

various plans. To address this, we employ multi-processing

for plan generation, aligning the number of plans with the

count of CPU cores. In our experiments, this number is set

to 24 (refer to Tab. 5), effectively matching the time needed

for generating multiple plans in a multi-processing setup to

producing a single plan in a single-processing framework.

This approach successfully preserves the high efficiency we

initially sought.

Hyperparameters. We divide all the hyperparameters listed

in Tab. 5 into four parts, each corresponding to expert demon-

stration and dataset, diffusion policy module, value function

module, and general training configurations.

Transforming FPV RGB-D observations into 3D point

clouds. Our framework for 3D navigation first processes

each depth image by creating a mesh grid based on the

camera’s intrinsic parameters, representing the camera’s 2D

image space pixel coordinates. Integrating this mesh grid

with depths facilitates a 2D-to-3D mapping for each pixel.

By employing the depth values and the camera mesh grid,

the system calculates the 3D position of each pixel relative to

the camera, a process known as unprojection. This method

converts 2D pixel coordinates into 3D coordinates relative

to the camera. Subsequently, these 3D coordinates are trans-

formed into world coordinates using rotation and translation

matrices, adjusting for the camera’s position and orientation

within the scene. This conversion process is systematically

applied to each specified image. For every image processed,

a 3D point cloud in world coordinates is generated and ag-

gregated into a unified data structure. The culmination of

this process is an extensive point cloud that encapsulates

the entire scene as captured by the FPV images, where each

point in the cloud corresponds to a pixel in the original depth

images and is positioned according to its real-world location.

Generating BEV environmental maps from 3D point

cloud. In Sec. 3.4, we detail our use of Swin3D for semantic

segmentation of 3D point clouds. The pre-trained Swin3D

classifies points in unseen scenes into 13 categories: ceil-

ing, floor, wall, beam, column, window, door, table, chair,

sofa, bookcase, board, and clutter. Points unassigned to

the first 12 categories default to clutter. After segment-

ing the point cloud (represented as (X,Y, Z,R,G,B)) with

Swin3D, each point’s class prediction is appended to its orig-

inal tuple, creating a seven-element tuple. These tuples are

then projected onto the X-Z plane, aligning with the BEV

perspective, as the Y-axis (height in FPV RGB-D input)

is perpendicular to the BEV plane. The Z-axis, indicating

depth in FPV images, corresponds to one of the BEV dimen-

sions. In our experiment, we map these points onto a grid

determined by a given map resolution of 50×50. For each

grid cell, we classify it as an obstacle or free space based

on the majority of points it contains—cells primarily with

ceiling and floor points are marked as free space; others are

deemed obstacles. This process yields a binary BEV map

analogous to those in GridMaze2D, directly applying to our

diffusion policy for planning.

7. Additional Qualitative Results

In Fig. 7, we present three cases of employing our method for

navigation in GridMaze2D. The first two subfigures show-

case successful navigation, where the agent following our

policy explores the environment effectively, safely back-

tracks from dead ends, and finally reaches the target. Such

cases account for the majority of all test cases. The third

subfigure illustrates a failed scenario where the agent ends

up in an indefinite loop. Unlike CALVIN’s failure, where

the agent repeats reverse actions consecutively and thus gets

stuck in some small space, our policy leads to larger naviga-

tion path cycles, which are more unlikely to occur.

8. Additional Quantitative Results

We evaluate the robustness against sensor noise in AVD.

Specifically, we add noise sampled from N (0, I) to depth

Figure 7. Qualitative results in GridMaze2D. The first two

subfigures depict successful cases that use our approach. The

last one illustrates a failed case, where the agent gets stuck in an

indefinite loop. Refer to Fig. 6 for the denotation of markings.

images. Numerical results in Tab. 6 reveal a nuanced land-

scape of performance resilience. Both CALVIN variants

exhibit a moderate decline in effectiveness under noisy condi-

tions, with CALVIN-3D displaying slightly better resilience

than its 2D counterpart, suggesting that 3D models pos-

sess inherent robustness to sensor inaccuracies in its trained

3D-to-2D projector. The zero-shot version of our approach

stands out for its remarkable stability, experiencing negli-

gible performance degradation despite the introduction of

noise, underscoring its exceptional capability for zero-shot

policy transfer in adverse environments. However, our pol-

icy retrained with RGB-D inputs consistently outperforms

the others across a spectrum of scenarios and demonstrates

extraordinary robustness. It suffers only minimal setbacks

in the face of sensor noise. Thus, while all methods show

some susceptibility to sensor noise, our approach emerges

as the most robust, underlining the efficacy of incorporat-

ing additional sensory data through retraining in enhancing

noise immunity. This finding could be pivotal for real-world

applications where conditions are far from ideal.

Scene CALVIN-2D CALVIN-3D Ours (Zero-shot) Ours (Retrain)

Home_001_1 0.692±0.037 0.720±0.052 0.769±0.038 0.776±0.028

Home_001_1 (noisy) 0.674±0.048 0.714±0.059 0.767±0.043 0.772±0.033

Home_001_2 0.627±0.037 0.640±0.048 0.655±0.033 0.732±0.030

Home_001_2 (noisy) 0.604±0.042 0.638±0.058 0.652±0.036 0.730±0.031

Home_002_1 0.735±0.035 0.740±0.048 0.728±0.034 0.755±0.027

Home_002_1 (noisy) 0.696±0.045 0.735±0.050 0.727±0.033 0.754±0.030

Home_003_1 0.606±0.042 0.642±0.060 0.638±0.041 0.686±0.031

Home_003_1 (noisy) 0.613±0.050 0.636±0.059 0.634±0.043 0.681±0.038

Home_003_2 0.558±0.033 0.590±0.043 0.603±0.033 0.622±0.030

Home_003_2 (noisy) 0.552±0.036 0.589±0.048 0.602±0.034 0.620±0.035

Home_004_1 0.647±0.040 0.680±0.050 0.684±0.042 0.695±0.036

Home_004_1 (noisy) 0.634±0.043 0.674±0.057 0.681±0.042 0.690±0.043

Home_007_1 0.587±0.038 0.610±0.045 0.584±0.039 0.601±0.035

Home_007_2 (noisy) 0.580±0.041 0.602±0.049 0.584±0.040 0.598±0.038

Home_010_1 0.728±0.033 0.736±0.043 0.769±0.032 0.781±0.028

Home_010_1 (noisy) 0.717±0.030 0.731±0.046 0.766±0.033 0.780±0.032

Mean succ. rate 0.635±0.032 0.682±0.047 0.679±0.040 0.706±0.032

Mean succ. rate (noisy) 0.626±0.037 0.670±0.052 0.675±0.042 0.700±0.040

Table 6. Performance of CALVIN and our method in AVD’s em-

bodied navigation and object searching tasks, where the goal is to

locate a Coca-Cola glass bottle in an indoor scene. It presents the

agent’s success rates across various scenes. Our method, which

achieves comparable results to CALVIN in zero-shot policy transfer

from the 2D domain, surpasses CALVIN in scenarios retrained with

additional RGB inputs, with an exception in one scene.

9. Limitations and Future Work

This work has two main limitations—high reliance on pre-

cise point cloud semantic segmentation for the 3D domain

and potential suboptimal long-term decision-making embed-

ded in the value guidance due to QMDP’s strong assumption

of full observability in future timesteps.

Reliance on the performance of segmentation model. For

effective semantic segmentation of point clouds, it is impera-

tive that the chosen model reliably identifies key objects like

floors, ceilings, and walls across diverse indoor settings. Mis-

labeling can lead to incorrect BEV map projections and cause

catastrophic planning errors. Continuously improving the

segmentation model’s quality is essential to ensure accuracy.

Thus, future work may involve fine-tuning the model on a

small, labeled dataset from the target domain, if available, to

boost performance significantly. Alternatively, for domains

where labeled data is unavailable, unsupervised adaptation

methods like adversarial training or self-ensembling could

be employed. However, developing an entirely new semantic

segmentation framework specifically for point cloud data

is beyond the scope of our discussion, which focuses on

decision-making in navigation planning.

Potential suboptimal long-term planning. As we introduce

in Sec. 2, the QMDP heuristic simplifies the value iteration

of POMDP by taking into account partial observability only

at the current timestep but assuming full observability on

subsequent timesteps. Doing so can make optimal decisions

in the immediate sense but be suboptimal when consider-

ing a longer horizon. In our work, unlike autoregressive

approaches, we need not only one optimal step of action but

a sequence of steps that accounts for the predicted action

trajectory, which might amplify the impact of suboptimality

of QMDP in farther timesteps. To address this issue, we can

consider point-wise value iteration in future work.

	. Introduction
	. Related Work and Preliminary
	. Methodology
	. Problem Formulation
	. Diffusion-model-based Plan Generation
	. Value-guided Exploration-safe Planning
	. 2D to 3D Policy Transfer

	. Experiments
	. Task Setups
	. Result Analysis
	. Ablation Study

	. Conclusion
	. Network Architectural and Experimental Specification
	. Additional Qualitative Results
	. Additional Quantitative Results
	. Limitations and Future Work

