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7. Experiments
7.1. Setting

VDT adopts the ViT-base [34] as the baseline, which con-

tains N = 12 encoder blocks and is pre-trained on the Ima-

geNet [45]. The patch size and stride size in VDT are set to

16×16. The size of the input image is resized to 256×128,

so the M = 128. The embedding shape d of tokens is set to

768. The tm and tv are randomly initialized at the beginning

of training. During training, we adopt padding with 10 pix-

els, random cropping, and random erasing with a probabil-

ity of 0.5 for data augmentation. We adopt a soft version of

triplet [21] to avoid manually selecting m in the triplet loss.

The stochastic gradient descent [46] optimizer is used. The

cosine learning rate decay is adopted to reduce the learning

rate from initial 8× 10−3 to final 1.6× 10−6. The number

of training epochs is 120. The batch size is 128, includ-

ing 32 identities, each with four images. We do not apply

any data augmentation or re-ranking during inference. The

VDT is implemented by PyTorch [36, 47]. All experiments

have been conducted on one A5000 GPU.

7.2. Visualization

Retrieval visualization. Fig. 6 shows the retrieval advan-

tages of VDT under multiple protocols of the two datasets.

Compared to the baseline, VDT achieves better feature

decoupling and extracts more discriminative descriptions

of the target person from view-unrelated features, which

makes the identity features more robust under each proto-

col of both datasets. Fig. 6 amply illustrates that the pro-

posed view decoupling is feasible and effective for alleviat-

ing view discrepancy in AGPReID.

Feature visualization. As shown in Fig. 7, we randomly

select a pedestrian identity on each dataset and visualize

the meta (circle) and view (triangles) tokens corresponding

to all the images under this identity (the same color means

from the same image). In Fig. 7, meta and view tokens show

good cohesion and significant differences from each other,

which indicates that our method achieves good decoupled

representations between these two tokens.

7.3. Cross-dataset evaluation

The results (training on CARGO, and testing on AR-ReID)

have been shown in Tab. 4, which indicates that the direct

cross-dataset (domain) evaluation is challenging, but our

VDT has advantages over the baseline. One possible rea-

son is that our decoupling strategy allows identity-related
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Figure 6. Comparison of several retrieval visualizations on the

CARGO and AG-ReID dataset protocols. Red and green boxes

represent wrong and correct matchings. The top five are listed.
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Figure 7. Visualization of meta and view tokens via tSNE.

Table 4. Cross-domain performance evaluations (%) for transfer-

ring from CARGO to AG-ReID dataset.

Method

CARGO→AG-ReID

Protocol1: A→G Protocol2: G→A

Rank1 mAP mINP Rank1 mAP mINP

ViT [34] 1.59 1.95 0.8 3.01 2.31 0.95

VDT (Ours) 19.33 11.81 1.63 15.38 11.73 3.38

learning to be less perturbed by domain-related factors (e.g.,

view bias), leading to more discriminative identity features.



Table 5. Performance comparison (%) on CARGO and AG-ReID datasets.

Method

CARGO AG-ReID AG-ReID

Protocol1: ALL Protocol1: A→G Protocol2: G→A

Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP

TransReID [29] 60.90 53.17 39.57 78.25 70.03 44.74 79.74 70.79 45.12

VDT (Ours) 64.10 55.20 41.13 82.91 74.44 51.06 86.59 78.57 52.87

7.4. Discussion

The results of TransReID [29] on two datasets have been

shown in Tab. 5, which shows that show that although Tran-

sReID [29] introduces additional camera information and

encodes it as part of the input, its performance on both

datasets is still weaker than that of the our method, prov-

ing the effectiveness of the proposed decoupling strategy

proposed for the AGPReID task.


