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In this supplementary material, we provide more details of
our AMD and present more experiment results. Specifically,
we provide more implementation details in our experiments
in Section A. Then, we present the differences between the
different alignment methods in Section B. After this, We
discussed on the reconstruction task in Section C. Then, we
continued our analysis of the teacher performing no masking
in Section E. Next, we discussed the masking of the student
model in Section D. Finally, we continued our analysis of
the comparison with DMAE in Section F.

A. Implementation Details
We conduct the experiments with 32 A100-80G GPUs for
pre-training on SSV2 and K400. Additionally, we fine-tune
the SSV2 with 16 GPUs, the K400 and the AVA with 32
GPUs. All ablation experiments conduct with 16 GPUs. The
experiments on UCF101 and HMDB51 both worked with
8 GPUs. Our implementation is based on VideoMAE [9]
and follows the data augmentation settings of pre-training
and fine-tuning. To speed up model training and improve the
stability, we perform the repeated sampling [5]. The training
schedule we give is the total number of times a sample has
been sampled. The pre-training settings on the SSV2 and
K400 datasets are showm in Table S1.
SSV2. We pretrain AMD on SSV2 for 800 epochs by default.
For fine-tuning, we perform the spare sampling [10] and
report the 2 clips ×3 crops evaluation results and the settings
are shown in Table S2.
K400. We pretrain AMD on K400 for 800 epochs by default.
For fine-tuning, we report the 5 clips ×3 crops evaluation
results and the settings are shown in Table S2.
HMDB51 and UCF101. We only fine-tune the model pre-
trained on K400 to the HMDB51 and UCF101 dataset. We
report the 5 clips ×3 crops evaluation results and the settings
are shown in Table S3.
AVA. We refer to the most classic two-stage structure to
detect key frames of the video. In the first stage, we use
the box detected in AIA [8]. While in the second stage, we
use the ViT backbone to classify the objects detected in the
first stage. Follwing VideoMAE, the short side size of the
input is resized to 256 pixels. The ground-truth person boxes

config SSV2 K400
optimizer AdamW
learning rate 1.2e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [2]
batch size 2048
repeated sampling [5] 4
learning rate schedule cosine decay [6]
epochs 800
warmup epochs 40
sampling rate 2 4
flip augmentation no
augmentation MultiScaleCrop [10]

Table S1. AMD pre-training setting for both ViT-S and ViT-B
backbone.

config SSV2 K400
optimizer AdamW
base learning rate 1e-3 (S), 5e-4(B) 1e-3 (S),7e-4 (B)
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999

batch size 512 (S,B) 512 (S),1024 (B)
learning rate schedule cosine decay [6]
warmup epochs 5
training epochs 40 (S), 30 (B) 150 (S), 90 (B)
sampling rate sparse [10] 4
repeated sampling [5] 2
flip augmentation no yes
RandAug [3] (9, 0.5)
label smoothing [7] 0.1
mixup [12] 0.8
cutmix [11] 1.0
drop path 0.1
head dropout None
layer-wise lr decay [1] 0.7 (S),0.75 (B) 0.75 (S,B)

Table S2. AMD fine-tuning setting of SSV2 and K400.

are only used for training. In term of the inference, we use
the detected boxes with confidence ≥ 0.8. The settings are
shown in Table S3.
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Figure S1. We apply four feature alignment methods in our work, with the serial alignment being our default setting.

config HMDB51 UCF101 AVA
optimizer AdamW
base learning rate 1e-3 5e-4 2.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 128 256 128
learning rate schedule cosine decay [6]
warmup epochs 5
training epochs 60 100 30
sampling rate 2 4 4
repeated sampling [5] 2 2 no
flip augmentation yes
RandAug [3] (9, 0.5) (9, 0.5) –
label smoothing [7] 0.1 0.1 –
mixup [12] 0.8 0.8 –
cutmix [11] 1.0 1.0 –
drop path 0.1 0.2 0.2
head dropout 0.5 0.5 None
layer-wise lr decay [1] 0.75 0.70 0.75

Table S3. Fine-tuning setting of HMDB51, UCF101 and AVA.

B. Different alignment methods Details

Four alignment strategies are described in this paper, with
specific structural details described below and the structures
are shown in Figure S1.
Direct alignment. We employ a 2layer MLP for alignment,
where the hidden layer has the same dimension as the teacher
model and the activation function is GELU [4]. Additionally,
the features to be aligned have not been normalised.
Generation alignment. We applied a decoder-like generator
to align teacher features, where the number of [MASK]
tokens is the number of tokens that the teacher has more
than the student. A linear projection layer is needed to align
the teacher’s dimension before the student features are fed

Method Model Epochs Reconstruction Top-1

AMD ViT-B 800 ✗ 73.0
AMD ViT-B 800 ✓ 73.3

Table S4. We compared the results with and without the reconstruc-
tion task with 800 epochs of training.

into the generator. And the features used to calculate the
alignment loss is also those features that the teacher have
more of than the student.
Parallel alignment. We have combined the two alignment
methods in a parallel way, where the direct alignment part
uses only a simple linear projection layer. It is worth noting
that the projection layer of the two alignment methods do
not share parameters.
Serial alignment. We combine the two alignment methods
in a serial way as our default setting, and the two aligned
linear projection layers share parameters, which can reduce
the difficulty of generation alignment.

C. Discussion on reconstruction task
To verify the effect of the reconstruction task in distillation,
we have made a comparison in Table S4. The results show
that distillation using the reconstruction task performs better.
We consider that the reconstruction task provides a regular-
isation for model distillation and allows students to learn
more semantic information that is beneficial for generali-
sation, which also allows AMD to benefit from a longer
training schedule.

D. Analysis of the masking of the student
Note that the VideoMAE’s optimal masking ratio on the
reconstruction task is 90%, and AMD also focuses on the



Figure S2. The average attention distance in different attention heads at each layer depth. Distances are calculated over 16 frames, and
frame spacing is calculated over the maximum distance of each frame. Results are averaged over SSV2 test set.

pre-training, so we fixed the masking ratio of the student
model at 90% in order not to damage the reconstruction
difficulty. We supplement an experiment with a student
masking ratio of 80% and a teacher masking ratio of 75%,
whose accuracy is 73.1% after 800 epochs of training, lower
than the default setting (73.3%).

E. Analysis of teacher performing no masking
We found that the performance degradation occurs when the
teacher masking is extremely low. We think that there might
be a conflict in our training goals. The conflict becomes
more apparent under an extremely low masking ratio of the
teacher model. Our training aims to do two things: 1) recon-
structing the image pixels and 2) aligning with the teacher’s
features. However, a low masking ratio in the teacher model
means it covers more global information. This can lead to
a mismatch with the student model’s reconstruction task.
We have noticed that the reconstruction loss rises when the
masking ratio of the teacher model becomes quite low, which
may support our conjecture about the conflict.

Furthermore, we supplemented a experiment with a
teacher’s masking ratio of 25%, which resulted in 72.3%. So
the peak in accuracy might occur roughly at a teacher mask-
ing ratio of 45%. However, when the teacher’s masking ratio
was reduced from 60% to 45%, its training cost increases but
its gain is very limited. So we suggest choosing the teacher’s
masking ratio from efficiency considerations.

F. Comparison with DMAE
Overall, the two main differences between AMD and DMAE
are asymmetric masking and generation alignment which
are discussed in Table 1. In addition, to understand the
distinct impacts of the AMD and DMAE masking distillation
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Figure S3. Detailed breakdown of accuracy comparison be-
tween AMD and DMAE by categories. We checked the perfor-
mance gap on SSV2 in terms of categories on the test set.

strategies on the video model pre-training, we provided a
comparison of 14 categories in SSV2 with the most accuracy
difference in Figure S3. It shows that AMD has a stronger
ability to infer object interactions, spatial relationships, and
action outcomes.

Furthermore, we examined the average attention distance
of DMAE, AMD and VideoMAE (the teacher model) to
reveal the properties of models in Figure S2. We find that at
shallow layers, each model has diverse attention heads which
means model’s attention is both local and global. While at
deep layers especially the last layer, most attention heads of
AMD and VideoMAE tend to extract global informations,
which is different from DMAE. In the video domain, the
more global attention means that the model is able to capture
more global information about the action, which is beneficial
for action recognition. Therefore AMD is better at tasks
that require temporal understanding, which is due to the
asymmetric masking strategy that allows the teacher model
to see more contextual information.
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