
Boosting Spike Camera Image Reconstruction from a Perspective of

Dealing with Spike Fluctuations

— Supplementary Materials —

Rui Zhao1,2 Ruiqin Xiong1,2* Jing Zhao1,2 Jian Zhang3 Xiaopeng Fan4 Zhaofei Yu1 Tiejun Huang1,2

1School of Computer Science, Peking University
2National Key Laboratory for Multimedia Information Processing, Peking University

3School of Electronic and Computer Engineering, Peking University
4School of Computer Science and Technology, Harbin Institute of Technology

ruizhao@stu.pku.edu.cn

{rqxiong, jzhaopku, zhangjian.sz, yuzf12, tjhuang}@pku.edu.cn fxp@hit.edu.cn

7. Proofs and Introductions

7.1. Proof of theorem 4.1

The following theorem and lemmas are based on the follow-

ing assumption: There is no thermal noise and Poisson ef-

fect, and the input light intensity is constant. We refer to this

assumption as “photons’ arrival is constant” for simplicity.

The analyses in this subsection are based on a single pixel.

The meanings of variables in this subsection are shown in

Table 5.

Variable Meaning

Tr The time interval of spike reading.

L
The number of photons reaching a pixel

area during a Tr time interval.

θ
Accumulation threshold for spike firing

in the spike camera.

r Firing rate of spikes.

Ares
The residual accumulation at each

spike-reading moment.

S Binary spikes.

D
(1,1)
SFT , D

(1,1)
SFT

(1,1)-order differential of spike firing

time (vector and scalar).

P
The set of D

(1,1)
SFT only at moments that

a spike is fired.

Arpf
The residual accumulation right after

the last previous firing.

Table 5. The meanings of main variables in Sec. 7.1.

Lemma 7.1. Under the settings in Table 5 and the assump-

tion that the photons’ arrival is constant. The expectation

*Corresponding author.

() /r L = () / L=P

Lemma 7.3

Lemma 7.1 Lemma 7.2

Theorem 4.1

(1,1)

SFTDDistribution of

 (1,1)

SFT , / , /L L        D P

Figure 11. Proof pipeline of Theorem 4.1.

of the spike firing rate r is:

E(r) = L/θ. (16)

Proof. Suppose the residual accumulation in the accumula-

tor at each spike-reading moment, i.e., at the end of each

integrate-and-fire cycle is Ares(nTr). Since it has been

noted in Sec. 3 that θ > L, Ares of the pixel follows the

following properties:

Ares(nTr) = Ares((n− 1)Tr) + L− θS(nTr), (17)

where S(nTr) is 1 if there is a spike at time nTr else it’s

0. The average spike firing rate over n spike-reading cy-

cles can be obtained by summing the residual accumulation

from Tr to nTr:

n
∑

k=1

Ares(kTr) =

n
∑

k=1

Ares((k− 1)Tr)+nL− θ

n
∑

k=1

S(kTr),

(18)

Move all the terms with Ares to the left of the equal sign:

n
∑

k=1

Ares(kTr)−

n
∑

k=1

Ares((k− 1)Tr) = nL− θ

n
∑

k=1

S(kTr),

(19)

=⇒ Ares(nTr)−Ares(0) = nL− θ

n
∑

k=1

S(kTr). (20)

1

Divide both sides of the Eq. (20) by n:

Ares(nTr)−Ares(0)

n
= L− θ

1

n

n
∑

k=1

S(kTr). (21)

Sort out the Eq. (21) and let n → +∞, we can obtain:

E(r) = lim
n→+∞

1

n

n
∑

k=1

S(kTr)

= lim
n→+∞

Ares(nTr)−Ares(0)

nθ
+

L

θ
=

L

θ
.

(22)

Finish proving Lemma 7.1.

Lemma 7.2. Under the settings in Table 5 and the assump-

tion that the photons’ arrival is constant. Define P is the set

of (1,1)-order DSFT with spike firing at the corresponding

moment:

P =
{

D
(1,1)
SFT (kTr)

}

k∈{k | S(kTr)=1}n

k=1

.

There is:

E(P) = θ/L. (23)

Proof. Suppose the total time tall is sufficiently large, it can

be represented by either E(r) or D
(1,1)
SFT :

tall =

n
∑

k=1

(

S(kTr) ·D
(1,1)
SFT (kTr)

)

, (24)

tall =
(

n
∑

k=1

S(kTr)
)

/

E(r), (25)

By considering the above two equations and Lemma 7.1,

we can obtain:

∑n

k=1

(

S(kTr) ·D
(1,1)
SFT (kTr)

)

∑n

k=1 S(kTr)
=

1

E(r)
=

θ

L
. (26)

It is noted that the leftmost term of Eq. (26) seems

like an expectation. But it’s not the expectation of

{D
(1,1)
SFT (kTr)}

n
k=1 since the {S(kTr)}

n
k=1 has masked a lot

of values of the D
(1,1)
SFT .

Define P is the set of (1,1)-order DSFT with spike firing

at the moment:

P =
{

D
(1,1)
SFT (kTr)

}

k∈{k | S(kTr)=1}n

k=1

. (27)

We can obtain:

E(P) =

∑n

k=1

(

S(kTr) ·D
(1,1)
SFT (kTr)

)

∑n

k=1 S(kTr)
=

θ

L
. (28)

Finish proving Lemma 7.2.

Lemma 7.3. Under the settings in Table 5 and the as-

sumption that the photons’ arrival is constant. Suppose θ

mod L ̸= 0. For one pixel at different moments, the D
(1,1)
SFT

and P have only two values: {⌊θ/L⌋, ⌈θ/L⌉}.

Proof. Suppose the residual accumulation right after the

last previous firing is Arpf, which contributes to the cur-

rent spike firing. It’s obvious that when Arpf = 0, the

current D
(1,1)
SFT is maximum since the previous integration

does not help the accumulation of this time. Since θ >
L and θ mod L ̸= 0, the current (1,1)-order DSFT is

max(D
(1,1)
SFT) = ⌊θ/L⌋+ 1 = ⌈θ/L⌉.

When Arpf ̸= 0, i.e., Arpf > 0, suppose for contradiction

that there are arbitrary two (1,1)-order DSFT satisfy:

(D
(1,1)
SFT)a − (D

(1,1)
SFT)b > 1. (29)

Suppose Aall is the accumulation before reset when firing

spike in this firing cycle, there is:

(D
(1,1)
SFT)a · L− (D

(1,1)
SFT)b · L

= ((Aall)a − (Arpf)a)− ((Aall)b − (Arpf)b)

= (Arpf)b − (Arpf)a > L.

(30)

Thus, there is (Arpf)b > (Arpf)a + L > L.

Suppose (D
(1,1)
SFT)last is the D

(1,1)
SFT of the last previous

fired spike, it satisfies:

(D
(1,1)
SFT)last · L ≥ θ, (31)

(

(D
(1,1)
SFT)last − 1

)

· L < θ. (32)

From Eq. (32) we can obtain that (D
(1,1)
SFT)last · L < θ + L.

Furthermore, since Arpf = (D
(1,1)
SFT)last · L− θ, so Arpf < L.

In light of the erroneous assumption Eq. (29), the conclu-

sion is inconsistent with the assumed objective fact Arpf >
L. Thus, there must exist a reality contrary to Eq. (29), i.e.,

(D
(1,1)
SFT)a − (D

(1,1)
SFT)b ≤ 1.

Since E(P) ̸= max(P) = max(D
(1,1)
SFT) and it can only

take integers. Thus, there are:

min(P) = min(D
(1,1)
SFT) = max(D

(1,1)
SFT)− 1 = ⌊L/θ⌋

(33)

As a result, D
(1,1)
SFT and P have two values: {⌊θ/L⌋, ⌈θ/L⌉}.

Finish proving Lemma 7.3.

Theorem 4.1. Under the settings in Table 5 and the as-

sumption that the photons’ arrival is constant. Suppose θ
mod L ̸= 0. the (1,1)-order DSFT has only two values

{⌊θ/L⌋, ⌈θ/L⌉} and its distribution is as follows:















Pr
{

D
(1,1)
SFT = ⌊θ/L⌋

}

= p1 = (⌈θ/L⌉ − θ/L) ·
⌊θ/L⌋

θ/L

Pr
{

D
(1,1)
SFT = ⌈θ/L⌉

}

= p2 = (θ/L− ⌊θ/L⌋) ·
⌈θ/L⌉

θ/L

where Pr{·} means probability.

Proof. Based on Lemma 4.1, since P has only two values

{⌊θ/L⌋, ⌈θ/L⌉}, its distribution is as follows:
{

Pr
{

P = ⌊θ/L⌋
}

= pa

Pr
{

P = ⌈θ/L⌉
}

= pb = 1− pa
(34)

According to the calculation formula of the expectation and

Lemma 7.2, we can obtain:

E(P) = ⌊θ/L⌋ · pa + ⌈θ/L⌉ · pb, (35)

and then we can solve:
{

Pr
{

P = ⌊θ/L⌋
}

= pa = ⌈θ/L⌉ − θ/L

Pr
{

P = ⌈θ/L⌉
}

= pb = θ/L− ⌊θ/L⌋
(36)

Consider the relationship between D
(1,1)
SFT and P. P only

includes the D
(1,1)
SFT at moments that a spike is fired. But at

moments without a spike, the D
(1,1)
SFT still has the same value

as the last spike firing moment. Thus, in D
(1,1)
SFT , ⌊θ/L⌋

occurs ⌊θ/L⌋ times as often as that in P, and ⌈θ/L⌉ occurs

⌈θ/L⌉ times as often as that in P. Thus, If we suppose the

distribution of D
(1,1)
SFT is:

{

Pr
{

D
(1,1)
SFT = ⌊θ/L⌋

}

= p1

Pr
{

D
(1,1)
SFT = ⌈θ/L⌉

}

= p2
(37)

We can solve the p1 and p2 through:

p1 =
pa · ⌊θ/L⌋

pa · ⌊θ/L⌋+ pb · ⌈θ/L⌉
, (38)

p2 =
pb · ⌈θ/L⌉

pa · ⌊θ/L⌋+ pb · ⌈θ/L⌉
. (39)

Finally, we can obtain the distribution of D
(1,1)
SFT :















Pr
{

D
(1,1)
SFT = ⌊θ/L⌋

}

= p1 = (⌈θ/L⌉ − θ/L) ·
⌊θ/L⌋

θ/L

Pr
{

D
(1,1)
SFT = ⌈θ/L⌉

}

= p2 = (θ/L− ⌊θ/L⌋) ·
⌈θ/L⌉

θ/L
(40)

Finish proving Theorem 4.1.

7.2. Introduction to harmonic mean inequality

Harmonic mean inequality. Suppose {a1, a2, . . . , an} is

a set of positive numbers. There is:

1

n

n
∑

k=1

ak ≥ n

(

n
∑

k=1

1

ak

)−1

, (41)

where the equal sign is only achievable when a1, a2, . . . , an
are completely equal.

It’s a fundamental inequality that can be proved easily

based on the convexity of the logarithmic function.

8. Additional Experimental Results and Details

8.1. Additional Details of Comparison Experiments

A. Parameters, running time, and costs.

As shown in Table 6, we compare the proposed BSF and

other methods on the number of parameters, computational

complexity (MACs), inference time, and GPU memory

cost. The inference times are tested on an NVIDIA RTX

3090 GPU with inputs of 256 × 400 resolution.

B. Details of quantitative evaluation.

As shown in Fig. 9 in the main paper, we use 12 scenes

for comparison on data captured by spike cameras in the

real world. Each scene has 400 frames of spikes. For each

scene, we generate the 50th, 60th, ..., and 140th frames for

quantitative comparison with non-reference image quality

assessment metrics. For each scene of the REDS-SCIR, we

use 110 spike frames and 4 image frames for training and

evaluation. REDS-SCIR has 8640 and 360 scenes for train-

ing and evaluation, respectively. Thus, for training, it has

950.4 k spike frames and 34.56 k images. For evaluation, it

has 39.6k spike frames and 1440 images.

C. Number of input frames of comparable methods.

We have compared SSML [1], Spk2ImgNet [5], and

WGSE [4] in the experimental parts of the main paper with

their original weights and weights retrained with the same

settings as ours, respectively. These three methods are de-

signed to use 41 frames of spikes as input, while our method

is designed to use 61 frames of spikes as input. For a more

rigorous comparison, we modify these three methods to use

61 as input and retrain the modified methods.

For SSML and WGSE, we directly modify the chan-

nel number of the input layer to 61. The original version

of Spk2ImgNet segments the input 41 frames of spikes

to 5 × 13-frame sub-streams with overlap. We modify

Spk2ImgNet to use 61 frames of spikes to 5 × 21-frame

sub-streams with overlap, and we modify the channel num-

ber of the input layer to 21, correspondingly.

The quantitative results of these three methods using 41
or 61 frames are shown in Table. 7. In summary, for exist-

ing data-driven methods whose NIF is modified to 61, the

proposed BSF still maintains an advantage.

D. Visual results on the SCIR-REDS dataset. We supple-

ment visual results on the REDS-SCIR dataset (η = 0.50)

in Fig. 13 and Fig. 14. For each method in these two fig-

ures, we show its reconstructed image and the error between

the reconstructed image and its corresponding ground truth.

The reconstructed images in the figures are normalized by

the quantum factor α and light intensity factor η: Inorm =
Ipred/(α · η). On the top right corner of the whole figure is

the color bar used for the error maps.

Part Method
Params

(M)

MACs

(G)

Time

(ms)

Memory

(GB)

η = 1.00 η = 0.75 η = 0.50

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

(B)
FireNet [2] ♣ 0.038 23.54 40.76 1.65 34.38 0.922 33.87 0.911 32.62 0.884

ETNet [3] ♣ 22.179 338.48 243.40 1.87 33.24 0.918 32.85 0.909 31.96 0.889

(C)
SSML [1]

2.385 386.02 408.32 4.19
32.60 0.920 32.09 0.907 31.00 0.879

SSML [1] ♣ 33.94 0.923 33.27 0.909 32.01 0.883

(D)

Spk2ImgNet [5]
3.904 1016.38 167.58 2.68

35.21 0.953 34.70 0.945 33.75 0.926

Spk2ImgNet [5] ♣ 39.16 0.966 38.27 0.958 36.59 0.940

WGSE [4]
3.806 425.22 88.65 4.78

35.21 0.950 34.98 0.947 34.11 0.931

WGSE [4] ♣ 38.97 0.964 38.23 0.957 36.75 0.940

BSF (Ours) 2.477 726.89 207.52 4.41 39.76 0.970 39.09 0.964 37.76 0.951

Table 6. The number of parameters, computational complexity, inference time, GPU memory cost, and quantitative performance on the

SCIR-REDS dataset of our and other methods. ♣ means the network is retrained on REDS-SCIR with the same settings as ours

Method NIF
η = 1.00 η = 0.75 η = 0.50

PSNP ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SSML [1] ♣
41 33.94 0.923 0.075 33.27 0.909 0.088 32.01 0.883 0.116

61 34.16 0.922 0.076 33.46 0.909 0.089 32.15 0.883 0.117

Spk2ImgNet [5] ♣
41 39.16 0.966 0.024 38.27 0.958 0.032 36.59 0.940 0.051

61 39.27 0.970 0.024 38.55 0.961 0.032 37.12 0.946 0.046

WGSE [4] ♣
41 38.97 0.964 0.027 38.23 0.957 0.034 36.75 0.940 0.049

61 38.91 0.963 0.027 38.17 0.956 0.034 36.76 0.940 0.049

BSF (Ours) 61 39.76 0.970 0.021 39.09 0.964 0.027 37.76 0.951 0.040

Table 7. Performance of data-driven spike camera image reconstruction methods whose number of input spike frames (NIF) is modified to

61 on REDS-SCIR dataset. ♣ means the network is retrained on REDS-SCIR with the same settings as ours

MGA
sp kp

PSNR ↑

Pym DCN CAPA η = 1.00 η = 0.75 η = 0.50

3 ✓ ✗ ✗ ✗ 39.380 38.768 37.533

3 ✓ ✓ 3 3 39.759 39.088 37.764

3 ✓ ✓ 5 3 39.704 39.041 37.714

3 ✓ ✓ 7 3 39.693 39.030 37.714

3 ✓ ✓ 9 3 39.700 39.037 37.721

Table 8. Ablation studies on the patchification size sp of the cross-

attentional patch-level alignment (CAPA) in multi-granularity

alignment (MGA) module.

MGA
sp kp

PSNR ↑

Pym DCN CAPA η = 1.00 η = 0.75 η = 0.50

3 ✓ ✗ ✗ ✗ 39.380 38.768 37.533

3 ✓ ✓ 3 3 39.759 39.088 37.764

3 ✓ ✓ 3 5 39.712 39.047 37.726

3 ✓ ✓ 3 7 39.731 39.069 37.749

3 ✓ ✓ 3 9 39.694 39.020 37.685

Table 9. Ablation studies on the local sampling size kp of

the cross-attentional patch-level alignment (CAPA) in multi-

granularity alignment (MGA) module.

8.2. Additional Results of Ablation Studies

A. Ablations on the patchification size sp of CAPA. In

the cross-attentional patch-level alignment (CAPA) of the

C
o

n
v

(6
4

)

C
o

n
v

(6
4

)

R
e

LU
R

e
LU

R
e

LU
R

e
LU

x 4

C
o

n
v

(1
9

2
)

C
o

n
v

(6
4

)

R
e

LU
R

e
LU

R
e

LU
R

e
LU

C
o

n
v

(1
)

(a) Encoder (b) Reconstruction Layer

Figure 12. Illustration of the structure of (a) encoder and (b) re-

construction layer in our method. In parentheses is the number of

the output channel.

multi-granularity alignment (MGA) module, features are

first patched into patches at sp × sp size without overlap.

We implement ablation studies on the sp. As shown in Ta-

ble. 8, when sp is 3, CAPA achieves its maximum perfor-

mance gain. When sp is greater than 3, the performance

gain decreases. Thus, the sp = 3 we choose is appropriate.

B. Ablations on the local sampling size kp of CAPA. In

the CAPA of the MGA module, the key features and value

features are locally sampled with kp × kp size to realize a

local search strategy. We implement ablation studies on the

kp. As shown in Table. 9, the performance of CAPA is in-

sensitive to changes in kp. Thus, we choose kp = 3 that has

less computational cost.

8.3. Additional Details of Network Architecture

The detailed architecture of the encoder and reconstructive

layer in the proposed method are shown in (a) and (b) of

Fig. 12, respectively. The Encoder consists of 4 layers of

residual blocks, which are used for embedding the spike

representation. The reconstruction we use is similar to that

in Spk2ImgNet [5].

9. Fast Algorithm for DSFT

For spike representation, we propose to use multi-order

DSFT to reduce the influence of multiple factors that make

spikes fluctuate. For the computing of (1,1)-order and

higher-order DSFT, we design two fast algorithms with

O(T) complexity, respectively, where T is the spikes’ tem-

poral length. We show these two algorithms in a pseudo-

code-like manner. Algo. 1 is designed for computing (1,1)-

order DSFT, and Algo. 2 is designed for higher-order DSFT.

References

[1] Shiyan Chen, Chaoteng Duan, Zhaofei Yu, Ruiqin Xiong,

and Tiejun Huang. Self-supervised mutual learning for dy-

namic scene reconstruction of spiking camera. In IJCAI, pages

2859–2866, 2022. 3, 4

[2] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick

Barnes, Robert Mahony, and Davide Scaramuzza. Fast im-

age reconstruction with an event camera. In WACV, pages

156–163, 2020. 4

[3] Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-

based video reconstruction using transformer. In ICCV, pages

2563–2572, 2021. 4

[4] Jiyuan Zhang, Shanshan Jia, Zhaofei Yu, and Tiejun Huang.

Learning temporal-ordered representation for spike streams

based on discrete wavelet transforms. In AAAI, pages 137–

147, 2023. 3, 4

[5] Jing Zhao, Ruiqin Xiong, Hangfan Liu, Jian Zhang, and

Tiejun Huang. Spk2ImgNet: Learning to reconstruct dynamic

scene from continuous spike stream. In CVPR, pages 11996–

12005, 2021. 3, 4, 5

GT (Up) TFP (ICME2019) TFP (ICME2019) TFSTP (CVPR 2021) MAHTF (TCI 2022) FireNet (WACV 2021) ♣ ETNet (ICCV 2021) ♣

SSML (IJCAI 2022) SSML (IJCAI 2022) ♣ Spk2ImgNet (CVPR 2021) Spk2ImgNet (CVPR 2021) ♣ WGSE (AAAI 2023) WGSE (AAAI 2023) ♣ Ours

Spikes(Down)

GT (Up) TFP (ICME2019) TFP (ICME2019) TFSTP (CVPR 2021) MAHTF (TCI 2022) FireNet (WACV 2021) ♣ ETNet (ICCV 2021) ♣

SSML (IJCAI 2022) SSML (IJCAI 2022) ♣ Spk2ImgNet (CVPR 2021) Spk2ImgNet (CVPR 2021) ♣ WGSE (AAAI 2023) WGSE (AAAI 2023) ♣ Ours

Spikes(Down)

GT / Input
Training-free

methods

Event-based

Architecture

Data-driven methods

(Self-supervised)

Data-driven methods

(Supervised)
♣ RetrainedGT / Input

Training-free

methods

Event-based

Architecture

Data-driven methods

(Self-supervised)

Data-driven methods

(Supervised)
♣ Retrained

Color Bar for Error Map

Figure 13. Visual comparison on the REDS-SCIR dataset. In the visualization of spikes, an orange point means a spike. In the visualization

of each method, on the top is the reconstructed image, and on the bottom is the error map between the reconstructed image and its ground

truth. On the top right corner of the whole figure is the color bar used for error maps. Please zoom in for more details.

GT (Up) TFP (ICME2019) TFP (ICME2019) TFSTP (CVPR 2021) MAHTF (TCI 2022) FireNet (WACV 2021) ♣ ETNet (ICCV 2021) ♣

SSML (IJCAI 2022) SSML (IJCAI 2022) ♣ Spk2ImgNet (CVPR 2021) Spk2ImgNet (CVPR 2021) ♣ WGSE (AAAI 2023) WGSE (AAAI 2023) ♣ Ours

Spikes(Down)

GT (Up) TFP (ICME2019) TFP (ICME2019) TFSTP (CVPR 2021) MAHTF (TCI 2022) FireNet (WACV 2021) ♣ ETNet (ICCV 2021) ♣

SSML (IJCAI 2022) SSML (IJCAI 2022) ♣ Spk2ImgNet (CVPR 2021) Spk2ImgNet (CVPR 2021) ♣ WGSE (AAAI 2023) WGSE (AAAI 2023) ♣ Ours

Spikes(Down)

GT / Input
Training-free

methods

Event-based

Architecture

Data-driven methods

(Self-supervised)

Data-driven methods

(Supervised)
♣ RetrainedGT / Input

Training-free

methods

Event-based

Architecture

Data-driven methods

(Self-supervised)

Data-driven methods

(Supervised)
♣ Retrained

Color Bar for Error Map

Figure 14. Visual comparison on the REDS-SCIR dataset. In the visualization of spikes, an orange point means a spike. In the visualization

of each method, on the top is the reconstructed image, and on the bottom is the error map between the reconstructed image and its ground

truth. On the top right corner of the whole figure is the color bar used for error maps. Please zoom in for more details.

Algorithm 1 O(T) algorithm for (1,1)-order differential of spike firing time (DSFT) D
(1,1)
SFT

Input:

The input spike streams S ∈ BT×H×W .

Output:

(1,1)-order DSFT D
(1,1)
SFT

.

1: Allocate three matrices pre idx, cur idx, D
(1,1)
SFT

with T ×H ×W size and assign −1 to all of their elements;

2: for i in 1, . . . , T do do

3: if i > 1 then

4: pre idx[i, :, :] = cur idx[i− 1, :, :];
5: cur idx[i, :, :] = cur idx[i− 1, :, :];
6: end if

7: cur idx[i,S[i, :, :] == 1] = i;

8: end for

9: diff = cur idx− pre idx;

10: for i in T, . . . , 1 do do

11: D
(1,1)
SFT

[i,diff[i, :, :] ̸= 0] = diff[i,diff[i, :, :] ̸= 0];
12: if i < T − 1 then

13: D
(1,1)
SFT

[i,diff[i, :, :] == 0] = D
(1,1)
SFT

[i+ 1,diff[i, :, :] == 0];
14: end if

15: end for

16: return D
(1,1)
SFT

;

Algorithm 2 O(T) algorithm for higher order differential of spike firing time (DSFT) D
(n1,n2)
SFT , n1 + n2 > 2

Input:

The input spike streams and (1,1)-order DSFT: S ∈ BT×H×W , D
(1,1)
SFT

∈ Q+,T×H×W .

Output:

higher order DSFT D
(1,2)
SFT

,D
(2,1)
SFT

,D
(2,2)
SFT

.

1: Allocate a matrix flag with H ×W size and assign −2 to all the elements;

2: Allocate two matrices dmls, drls with T ×H ×W size and assign −1 to all the elements;

/* dmls: dsft mask left shift, which means the difference between increasing the current dsft to the

left by one interval. dmrs: left -> right */

3: for i in T, . . . , 1 do do

4: flag = flag+ (S[i, :, :] == 1);
5: cp crd = (flag < 0); /* cp crd: copy pad coordinates */

6: dmls[i,cp crd == 1] = D
(1,1)
SFT

[i,cp crd == 1];
7: if i < T − 1 then

8: up crd = (S[i, :, :] == 1) ∗ (1− cp crd); /* up crd: update coordinates */

9: dmls[i,up crd == 1] = D
(1,1)
SFT

[i,up crd == 1];
10: non up crd = (S[i, :, :] ̸= 1) ∗ (1− cp crd); /* non up crd: non update coordinates */

11: dmls[i,non up crd == 1] = dmls[i+ 1,up crd == 1];
12: end if

13: end for

14: Assign -2 to all the elements of flag;

15: for i in 1, . . . , T do do

16: flag = flag+ (S[i, :, :] == 1);
17: cp crd = (flag < 0);

18: dmrs[i,cp crd == 1] = D
(1,1)
SFT

[i,cp crd == 1];
19: if i > 1 then

20: up crd = (S[i− 1, :, :] == 1) ∗ (1− cp crd);

21: dmrs[i,up crd] = D
(1,1)
SFT

[i,up crd == 1];
22: non up crd = (S[i− 1, :, :] ̸= 1) ∗ (1− cp crd);
23: dmrs[i,non up crd == 1] = dmrs[i− 1,up crd == 1];
24: end if

25: end for

26: D
(1,2)
SFT

= D
(1,1)
SFT

+ dmls;

27: D
(2,1)
SFT

= D
(1,1)
SFT

+ dmrs;

28: D
(2,2)
SFT

= D
(1,1)
SFT

+ dmls+ dmrs;

29: return D
(1,2)
SFT

,D
(2,1)
SFT

,D
(2,2)
SFT

;

