
CRKD: Enhanced Camera-Radar Object Detection with Cross-modality
Knowledge Distillation

Supplementary Material

We provide this supplementary material with additional
details to support the main paper.

A. Implementation Details
In this section, we provide implementation details of the
CRKD framework to enable cross-modality Knowledge
Distillation (KD) from a LiDAR-Camera (LC) teacher de-
tector to a Camera-Radar (CR) student detector.

A.1. Data Augmentation

Our data processing pipeline is mainly adopted from
the open-source implementation of BEVFusion [8]. The
pipeline of processing the camera image is the same in
the teacher and student models. The images of the cam-
eras from 6 Perspective View (PV) are loaded and resized
to 256 × 704. During the training process, data augmen-
tation is applied to the images. We resize the image with
scaling factors in the range of [0.38, 0.55]. We also set the
random rotation in the range of [−5.4◦, 5.4◦]. The images
are normalized following the default practice in [3]. For
the LiDAR input, the keyframe point cloud is loaded along
with 9 previous sweeps. During training, random resizing
is applied with the scaling factor in [−0.9, 1.1]. Translation
augmentation is also applied with a limit of 0.5m. For the
radar input, the keyframe is loaded with 6 previous sweeps.
We follow BEVFusion [8] to select radar data dimensions.
The training time augmentation of radar points is the same
as LiDAR data for consistency. We also apply the class-
balanced grouping and sampling (CBGS) strategy during
training [17]. We do not apply any test-time augmentation
for any of our models.

A.2. Teacher Model

As mentioned in the main paper, we add a gated network
to the BEVFusion-LC [8] and denote it as BEVFusion-
LC*. We use the CenterHead [14] as the detector head in
the BEVFusion-LC*. There are two streams in the teacher
model for LiDAR and cameras. The LiDAR point cloud is
encoded as the Bird’s Eye View (BEV) feature map through
the LiDAR encoder and BEV reduction module (flatten over
z dimension). For the camera stream, the images are loaded
and pre-processed to a resolution of 256 × 704. We use
the SwinT [7] backbone to process the images from 6 cam-
eras separately. The PV features are transformed to BEV by
taking advantage of the efficient PV-to-BEV transformation
module in BEVFusion [8]. The BEV feature maps from the
LiDAR stream and camera stream are passed into the gated

network to obtain gated feature maps with attentional rel-
ative importance between the input features. These gated
feature maps are further fused by the original convolutional
fusion module in BEVFusion [8]. The fused feature map is
then fed into a decoder and the CenterHead [14] to generate
object predictions. We train the teacher model for 20 epochs
using an AdamW optimizer [10]. The initial learning rate
is set as 2e-4 with a cosine annealing schedule [3, 9]. The
batch size is set as 16. The object sampling strategy [12]
is applied for the first 15 epochs. During distillation, the
pre-trained teacher weight is loaded and frozen.

A.3. Student Model

Similar to the LC teacher model, the gated network is
also applied to the CR student model, which is denoted as
BEVFusion-CR*. The stream to process the camera images
is the same as the teacher model. The input radar data is
processed by a PointPillar-based backbone [3, 5] to obtain
the BEV feature map for the radar stream. The feature maps
from these two streams are fused via the gated network
and the convolutional fusion module in BEVFusion [8]. To
maintain the consistency between the teacher and student
models, the student model also uses the CenterHead [14]
as the detector head. We train the student model following
the same setting as the teacher model. During distillation,
we load the pre-trained BEVFusion-CR* model and operate
cross-modality distillation with the proposed CRKD frame-
work.

A.4. Base Loss Choice

In general, L2 is more common for feature KD. However,
for CSRD, we have to consider the sensor properties. Due to
radar’s sparse measurements, some objects may be missed,
causing radar features at corresponding locations to be out-
liers when computing loss with the objectness heatmap. We
use L1 to downplay this effect as it penalizes large errors
less heavily than L2, which leads to 0.4% improvement in
mAP than using L2. For MSFD, we follow common prac-
tice (L2) as the domain gap is relatively small (shared cam-
era modality). For RelD, we agree with reviewer vB2P that
applying L1 between similarity matrices is appropriate. For
RespD, we mainly follow existing works (e.g., CMKD [4],
BEVSimDet [15]) to choose the base loss. Our method
is fairly robust to base loss choice, while the final design
aligns with our design consideration and brings the best per-
formance.



NDS↑ mAP↑Method Modality
[0m, 20m] [20m, 30m] [30m, 50m] [0m, 20m] [20m, 30m] [30m, 50m]

Teacher L+C 76.71 68.63 50.57 77.11 62.37 38.25

Student C+R 63.03 52.87 38.86 58.54 38.64 19.50
CRKD C+R 65.53(+2.50) 53.52(+0.65) 39.21(+0.35) 61.59(+3.05) 39.04(+0.40) 20.53(+1.03)

Table 1. Performance breakdown by range evaluated on the nuScenes val split. We quantitatively show the improvement made by CRKD
over the student model.

B. Supplementary Experiments

B.1. CRKD

After loading the pre-trained weights for the teacher and
student models, we add the four proposed KD loss terms
to the normal detection loss and start the KD training pro-
cess. We disable the object sampling strategy [12] during
distillation. We set the learning rate as 1e-4 with the cosine
annealing strategy and train the model for 20 epochs. The
batch size is set as 8. For the loss weights, we set the hyper-
parameters λ1, λ2, λ3, λ4, λ5 as 100, 10, 0.25, 1, 1, respec-
tively. More specifically, we set 1 as the weight for Lrespd

and Ldet since they both compute loss for box regression
and classification. The weight of Lreld is 0.25 as it sums
up the loss of 4 downsampled affinity map pairs. We em-
pirically select the weights of Lcsrd and Lmsfd (i.e., 100
and 10) to balance with other loss modules. For the Mask-
Scaling Feature Distillation (MSFD), we set r1 and r2 as
20m and 30m. The mask-scaling factors α and β are set as
0.25 and 0.5. For the velocity threshold, we set v1 and v2 as
0.3m/s and 0.8m/s. We also clip the object size expanding
value within [0.5m, 4m] to balance between different sizes
of objects.

B.2. CRKD Improvement Analysis

Since CRKD is performing a novel KD path (LC to CR),
we conduct more experiments to break down the improve-
ment brought by CRKD to provide further insight. As the
camera sensor is shared in both the teacher and student
models, we narrow down our focus to the difference be-
tween LiDAR and radar integration. Radars have better
long-range detection capability and weather robustness than
LiDAR [6, 13, 16]. In practice, we group objects by their
range to the ego-vehicle and the weather of the scene they
belong to. We show mAP and NDS of the teacher model,
the student model and CRKD. We highlight the quantitative
improvement KD brings over the student model. As shown
in Tab. 1, we can see that the most improvement comes
from the short-range group. This finding demonstrates that
CRKD helps the CR student detector to refine its detections
in the short-range group, which can be considered as one
of LiDAR’s strengths as LiDAR has satisfying density for

objects that are near to the LiDAR. We are also surprised
to see that for mAP, the improvement in long-range group
is more than the medium-range group. This finding can
provide evidence that cross-modality KD can also enhance
the strength of the student detector. In addition, we group
different scenes according to the weather and lighting con-
ditions. Table 2 demonstrates increased performance from
CRKD across all weather conditions, compared to the base-
line student model. Notably, we see a more significant in-
crease in improvement from CRKD in rainy weather. This
finding supports that cross-modality KD can help the stu-
dent to learn and leverage radar’s robustness to the varying
weather for better results.

B.3. Radar Distillation Design

CRKD presents a novel distillation path to a CR detector.
We specifically design the KD module for radars, which
has not been previously studied. We present more ablation
studies to justify our design choice. We hope our work can
bring more insights for future KD frameworks that leverage
the radar sensor. In the proposed Cross-Stage Radar Dis-
tillation (CSRD) module, we design a calibration module
to account for the noisy radar measurements. We conduct
an ablation study to understand the effect of the calibration
module. Table 3 demonstrates that the calibration module
helps to further improve the performance of the student de-
tector.

In addition to the ablation study in the main paper, we
show another ablation study of the best distillation source
for the CSRD module. Specifically, we compare between
using the ground truth heatmap or the heatmap predicted
by the teacher model. The results in Tab. 4 show that the
objectness heatmap predicted by the teacher detector is a
better distillation source for radar distillation.

We additionally compare taking the max or mean pool-
ing along the class dimension of the objectness heatmap Y T

predicted by the teacher detector. Table 5 shows that taking
the mean value along different classes of the source heatmap
brings more improvement.



NDS↑ mAP↑Method Modality Sunny Rainy Day Night Sunny Rainy Day Night

Teacher L+C 70.22 71.01 70.54 44.92 66.02 65.48 66.25 41.12

Student C+R 55.60 57.56 56.37 33.40 44.73 47.27 45.78 23.94
CRKD C+R 56.56(+0.96) 59.97(+2.41) 57.59(+1.22) 34.22(+0.82) 45.95(+1.22) 49.59(+2.32) 47.16(+1.38) 24.14(+0.20)

Table 2. Performance breakdown by weather and lighting evaluated on the nuScenes val split. We quantitatively show the improvement
made by CRKD over the student model.

Ungated Feature Map Gated Feature Map

Figure 1. Visualization of the ungated and gated camera feature maps in the teacher detector. The scene geometry can be more easily
interpreted from the gated feature map, as it has encoded information from the LiDAR point cloud. Best viewed in color.

Module w/o calib w/ calib mAP↑ NDS↑
✓ 45.9 56.9CSRD

✓ 46.0 57.0

Table 3. Ablation study of CSRD with the radar calibration mod-
ule.

Module GT Teacher Heatmap mAP↑ NDS↑
✓ 45.9 56.8CSRD

✓ 46.0 57.0

Table 4. Ablation study of CSRD with the different distillation
sources.

Module max mean mAP↑ NDS↑
✓ 45.6 56.8CSRD

✓ 46.0 57.0

Table 5. Ablation study of CSRD with different channel-wise
pooling methods on the heatmap predicted by the teacher model.

Module Ungated Gated mAP↑ NDS↑
✓ 45.5 56.8MSFD

✓ 45.7 56.9

Table 6. Ablation study of MSFD with the gated camera feature.

Module Cam Fused Cam&Fused mAP↑ NDS↑
✓ 45.7 56.9

MSFD ✓ 45.8 56.7
✓ 46.2 56.9

Table 7. Ablation study of MSFD with different distillation loca-
tions.

Module Dense Gaussian Ours mAP↑ NDS↑
✓ 45.7 56.8

MSFD ✓ 45.5 56.7
✓ 46.0 57.0

Table 8. Ablation study of MSFD with different feature masking
algorithms.



B.4. Feature Distillation Location

We also experiment with introducing feature distillation at
different locations. Since we introduce the gated network
to the original BEVFusion [8] model, we design an abla-
tion experiment justifying the introduction of the gated fea-
ture map to improve the feature distillation. Specifically, we
compare using the gated camera feature map or the ungated
camera feature map as the feature distillation source. The
results shown in Tab. 6 demonstrate that the gated feature
map serves as a more effective distillation source. We ad-
ditionally show a qualitative example in Fig. 1 to demon-
strate the benefits of using the gated feature map. The
gated feature map has more informative scene-level geom-
etry thanks to the gated network and learned relative impor-
tance weight.

Since the teacher and student models are both fusion-
based, we have multiple options of feature distillation loca-
tions (e.g., camera feature, fused feature). For the proposed
Mask-Scaling Feature Distillation (MSFD) module, we ex-
periment between different locations. As shown in Tab. 7,
the most effective design of MSFD is to perform the dis-
tillation of the gated camera feature map and fused feature
map together. Moreover, we conduct an experiment testing
alternative foreground mask generation methods. We exper-
iment with not including any foreground mask compared to
methods that include a foreground mask [1, 8, 16]. To com-
plement the ablation study in the main paper, we compare
the proposed CRKD module against the same instance with-
out any foreground mask (denoted as dense). In addition,
we try CRKD with a Gaussian-style heatmap [2, 15]. The
results are shown in Tab. 8. This table demonstrates that
though there are certain papers reporting having a Gaus-
sian heatmap is helpful [2, 15], the most effective masking
strategy in our scenario is still to apply the proposed mask-
scaling strategy.

B.5. Response Distillation: Strength Amplification
or Weakness Mitigation?

To better study the most suitable choice for the Response
Distillation (RespD) module, we design an experiment try-
ing to answer an insightful question: is the cross-modality
distillation most helpful in amplifying the strength of the
student or mitigating the weakness of the student? It is
widely recognized that radars are more capable of perceiv-
ing dynamic objects [6, 11, 16]. Therefore, the CR student
may benefit from the radar’s strength. As we have the flex-
ibility of varying the loss weight wi for different classes in
RespD, we experiment with different loss weight settings.
In addition to the ablation study of RespD reported in the
main paper, we conduct an experiment with static setting
where the loss weights for static classes are set to 2 while
the weights for the other classes are set to 1. In the static
setting, priority is given to the static classes, which radars

Module Vanilla Static Dynamic mAP↑ NDS↑
✓ 45.3 56.7

RespD ✓ 45.4 56.6
✓ 45.7 56.7

Table 9. Ablation study of Response Distillation (RespD) with
different weight settings.

are less capable of detecting. As shown in Tab. 9, the Re-
spD module works better when we prioritize the learning of
dynamic objects, which indicates that the RespD module is
more effective when designed to be amplifying the strength
of the student detector. The results complement the ablation
study we show in the main manuscript, demonstrating the
effectiveness of the proposed dynamic RespD module. We
hope this interesting finding could provide some guidance
to future study about designing cross-modality distillation
to leverage the strength of different modalities effectively.

B.6. Additional Qualitative Results

We show additional qualitative results of CRKD in Fig. 2.
In the first two samples (sample 1 and 2), we firstly show
that CRKD is able to outperform the student model since
its predictions are more aligned with the ground truth. We
credit this improvement to the effective design of CRKD.
We also show additional examples (sample 3 and 4) where
CRKD can even outperform the teacher detector thanks to
the long-range detection capability of radars. In the last
sample frame (sample 5), we show that CRKD is capable
of capturing the object that is missed by the student model.
In addition, it is also demonstrated that CRKD is able to
maintain accurate predictions where the teacher and student
models generate false predictions.



GT

Student

CRKD

1a. BEV Overview (Sample 1) 1c. Object catched by CRKD1b. Object missed by student

Teacher

2a. BEV Overview (Sample 2) 2c. Accurate predictions by CRKD2b. False predictions by student

3a. BEV Overview (Sample 3) 3b. False predictions by teacher and accurate predictions by CRKD

4a. BEV Overview (Sample 4) 4b. False predictions by teacher and accurate predictions by CRKD

5a. BEV Overview (Sample 5) 5c. Object catched and accurate predictions 
by CRKD

5b. Object missed and false 
predictions by student

Figure 2. More Qualitative results on nuScenes. We show zoomed-in views in panel b and c for the highlighted regions in panel a, with the
border dash as the correspondence. The highlighted regions are enclosed with border dash in ellipse. We show the ground truth annotation
in red, teacher prediction in green, student prediction in yellow, CRKD prediction in blue, and radar points in magenta. In (1a) to (1c),
we show an example frame where CRKD can capture the object missed by the student with the guidance of the teacher. In (2a) to (2c)
we show an example frame where CRKD can reject false predictions by the student model. In (3a) to (3b) and (4a) to (4b), we show two
examples where CRKD rejects false predictions by the teacher model and generates more accurate predictions. In (5a) to (5c), we show an
example where CRKD outperforms both the teacher and student models by capturing missed objects and generating less false predictions.
Best viewed on screen and in color.
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