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Supplementary Material
This document provides the supplementary materials that
cannot fit into the main manuscript due to the page limit.
Specifically, we first visualize the results on COCO dataset
and the group sparsity in Sec. A. Next, we provide more im-
plementation details for reproducibility in Sec. B. Finally,
we provide more experiments in Sec. C.

A. Visualization
Visualization of detection results. We provide visualiza-
tion results on COCO validation set before and after for-
getting. Fig. S2 is the result of single-step forgetting and
Fig. S3 is the result of continual forgetting. It is observed
that GS-LoRA can achieve selective removal without affect-
ing the remaining classes.
Visualization of parameter groups. To show the scalabil-
ity of GS-LoRA, we evaluate it on Face Transformers with
6 layers, 12 layers and 18 layers in Tab. 7. We visualize the
ℓ2 norm of each LoRA group in these models in Fig. S1. It
is observed that GS-LoRA achieves a sparse modification
on models of different sizes and shows excellent scalabil-
ity. Meanwhile, we can find that deeper layers in the Face
Transformer contain more class-specific information.

B. Implementation Details
B.1. Face Recognition

Network Architecture. Face Transformer is proposed by
Zhong et al. [17] who first uses Transformer architecture to
solve face recognition tasks. A Face Transformer is a stack
of Transformer blocks with a CosFace [14] classifier.
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Figure S1. ℓ2 norm of each LoRA group in different Face
Transformers. The first row shows a Face Transformer with 6
layers. The second row shows a Face Transformer with 12 layers.
The last row shows a Face Transformer with 18 layers. Lighter
colors mean smaller ℓ2 norms which indicate less modification.

Config Value
optimizer AdamW
base learning rate 3e-4
learning rate schedule cosine decay
minimal learning rate 1e-5
weight decay 0.05
momentum β1, β2 =0.9, 0.999
batch size 480
warm-up epochs 10
warm-up learning rate 1e-6
training epochs 1200
dropout rate 0.1

Table S1. Pre-training settings for Face Transformer.

Pre-training. We pre-train a Face Transformer on CASIA-
Face100 dataset for 1200 epochs. Implementation details
can be found in Tab. S1.
Forgetting. For the forgetting process, we use 1337 as the
random seed to generate a forgetting order. Implementa-
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Figure S2. Visualization for single-step forgetting.

Config Value
optimizer AdamW
base learning rate 1e-2
learning rate schedule cosine decay
minimal learning rate 1e-5
weight decay 0.05
momentum β1, β2 =0.9, 0.999
batch size 48
warm-up epochs 0
training epochs 100
dropout rate 0.1
BND 110
K 20
β 0.15
αK 0.01
LoRA rank 8
data ratio 0.1

Table S2. Forgetting settings for Face Transformer.

tion details can be found in Tab. S2 for all experimental set-
tings, which shows the robustness of GS-LoRA. Here, BND
is the bound in Eq. (10), K and αK is the hyperparameter
in Eq. (9), and β is the hyperparameter in Eq. (12). Note
that “data ratio” is the ratio of data used for forgetting to
data used for pre-training. To achieve fast model editing,
the forgetting epoch is set to 100 and 0.1× pre-training data
is used. This is equivalent to fine-tuning the model using
all pre-training data with only 10 epochs, which is less than
1% compared with 1200 epochs in the pre-training process.

B.2. Object Detection

Network Architecture. We use a Deformable DETR in
object detection tasks. Deformable DETR has 3 parts:
backbone, encoder and decoder. The backbone is an Im-
ageNet [2] pre-trained ResNet-50 [7]. The encoder and de-
coder both have 6 Transformer blocks using multi-head de-
formable attention.
Pre-training. We use the pre-trained model released by
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Figure S3. Visualization for continual forgetting. The left column shows the results from the pre-trained model. The middle column
shows the results when “keyboard” (red bounding boxes in the left column) is erased. The left column shows the results when more objects
(e.g., person, book, chair) are erased.

Zhu et al. [18], where Deformable DETR is trained on
COCO 2017 training set for 50 epochs and reaches 43.8 AP
on COCO 2017 validation set.
Forgetting. For the forgetting process, we first generate a
random list using seed 123 following Liu et al. [11] to de-
termine the forgetting order. Implementation details can be
found in Tab. S3 when 40 classes are forgotten. For other
experimental settings, hyperparameters are slightly differ-
ent on β and the learning rate.

B.3. Baselines Implementation Details

B.3.1 Continual Learning Methods

We implement six continual learning methods to realize
continual forgetting. Taking EWC as an example, we con-
duct it for forgetting as follows. First, we give randomly

wrong labels to the forget set. Then, we use the remaining
set to calculate the weight importance of EWC. Finally, we
regard learning on the modified forget dataset as a new task
and perform EWC algorithm. Note that we freeze the final
FFN layer to ensure backbone forgetting. Additionally, for a
fair comparison, we use the remaining set as a replay buffer
to enhance the performance, which is denoted as EWC∗.

B.3.2 Machine Unlearning Methods

Existing machine unlearning methods can be categorized
into exact unlearning and approximate unlearning. Ex-
acting unlearning needs to conduct specific designs in the
pre-training process, however, we cannot modify the pre-
training process in a continual forgetting setting. Ini-
tial studies on approximate unlearning are computationally
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Config Value
optimizer SGD
momentum 0.9
base learning rate 2e-4
weight decay 1e-4
batch size 16
training epochs 30
dropout rate 0.1
BND 15
β 0.2
αK 3e-4
gradient clipping 0.1
LoRA rank 8
data ratio 0.1

Table S3. Forgetting settings for Deformable DETR.

heavy, e.g., [4, 6, 12] need to calculate the Hessian matrix.
These methods cannot be applied to large-scale problems,
and we do not compare with them. We compare our GS-
LoRA with state-of-the-art LIRF [15], SCRUB [10] and
SCRUB-S (a variant of SCRUB). LIRF [15] also uses a dis-
tillation strategy to realize the deposit and withdrawal of
knowledge in a model. For a fair comparison, we add an
additional replay buffer for LIRF.

SCRUB [10] uses distillation to realize efficient approx-
imate unlearning. The training objective is:

min
wu

α

Nr

∑
xr∈Dr

d (xr;w
u)

+
γ

Nr

∑
(xr,yr)∈Dr

ℓ (f (xr;w
u) , yr)

− 1

Nf

∑
xf∈Df

d (xf ;w
u) ,

(S1)

where d (x;wu) = DKL (p (f (x;wo)) ∥p (f (x;wu))) is
the KL-divergence between the student (wu) and teacher
(wo) output distributions for example x, wo is the weight
of a pre-trained model (teacher) and wu is the student. xr

and xf are the retained set and forgotten set which contain
Nr and Nf samples, respectively. ℓ is the cross-entropy loss
and α and γ are hyperparameters.

However, Kurmanji et al. [10] find that directly optimiz-
ing Eq. (S1) is challenging and utilize a min-max optimiza-
tion method following GAN [5]. To further improve the
performance, we adopt a smoothing optimization method
[16] as a variant of SCRUB and name it SCRUB-S.

???? show the results in single-step forgetting and con-
tinual forgetting settings. It is observed that LIRF cannot
realize effective forgetting under our fast model erasure set-
ting, which is data-inefficient. SCRUB and SCRUB-S can
achieve forgetting when a small number of classes need
to be deleted, but GS-LoRA achieves better overall perfor-
mance (H-Mean). When we want to delete a large number

of classes, only GS-LoRA can achieve complete forgetting
while maintaining the performance of the rest. In a con-
tinual forgetting setting, SCRUB-S can achieve compara-
ble performance with GS-LoRA, but the accuracy on previ-
ously forgotten classes (Acco) is a little bit high in SCRUB-
S, which is undesirable. In summary, the data efficiency,
parameter efficiency and effectiveness of GS-LoRA make it
the most applicable in real-world scenarios.

C. More Experiments
In this section, we conduct more experiments to verify
the effectiveness and efficiency of GS-LoRA. In Sec. C.1,
we perform GS-LoRA in image classification tasks. In
Sec. C.2, we conduct ablation studies on β in the loss func-
tion. In Sec. C.4, we perform more experiments when the
replay buffer is incomplete and compare GS-LoRA with
continual learning baselines.

C.1. Experiments on Image Classification

To further demonstrate the universality of our method, we
use GS-LoRA to realize continual forgetting on image clas-
sification tasks. We choose ImageNet100 [2] dataset and a
pre-trained ViT [3] model in S4, where GS-LoRA still out-
performs other baselines significantly.

C.2. Ablations on β in Loss Function

Our data loss function is ??, where β controls the level
of forgetting. We conduct ablation studies in S5 on face
recognition tasks. It is amazing that we find GS-LoRA
demonstrates excellent performance across a wide range of
β, which shows the robustness of our method.

C.3. Different Grouping Strategies

By default, we regard two LoRA modules in a Transformer
block as a group (see in ??). In this section, we explore the
effect of using GS-LoRA with different grouping strategies.
In the FFN module [13], there are two linear layers, each of
which can add a LoRA module. And in a LoRA module [8],
there are two low-rank matrices.

We consider three grouping strategies: “Block”, “Mod-
ule” and “Matrix”. “Block” is the default setting. “Mod-
ule” denotes each LoRA module is a group, resulting in
twice the number of groups compared to the Transformer
blocks. “Matrix” means each matrix in LoRA modules is
a group and the number of groups is four times the number
of Transformer blocks.

We conduct our experiments on a Face Transformer and
all the experiments are performed at the same sparse inten-
sity, i.e. α is the same. Tab. S6 shows the results of different
grouping strategies. Notably, all grouping strategies yield
exceptional performance. It is observed that with a more
detailed grouping strategy, the zero-group ratio increases,
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Methods
100-20 80-20 60-20 40-20

H ↑ Accr ↑ Accf ↓ H ↑ Accr ↑ Accf ↓ Acco ↓ H ↑ Accr ↑ Accf ↓ Acco ↓ H ↑ Accr ↑ Accf ↓ Acco ↓

Pre-train - 68.0 60.5 - 64.1 60.9 - - 69.2 63.3 - - 76.5 70.7 -
L2∗ 47.6 64.9 22.9 47.6 68.0 24.3 30.0 40.0 70.1 35.3 24.5 52.7 74.7 29.9 23.5

EWC∗ [9] 54.1 64.9 14.2 55.6 64.9 12.2 13.9 53.8 72.7 20.7 7.8 62.0 80.0 20.1 9.1
MAS∗ [1] 54.0 64.9 14.2 57.1 69.0 12.2 13.7 54.0 72.7 20.4 7.7 62.2 80.2 19.8 8.8

Retrain 22.1 13.6 1.0 33.0 22.7 0.7 0.0 41.1 31.0 2.2 0.0 54.7 46.1 3.4 0.0
GS-LoRA 60.3 63.0 2.6 61.7 66.9 3.6 0.8 65.9 74.1 4.0 0.5 73.8 82.7 4.1 0.0

Table S4. Continual forgetting results for image classification. Acco is the accuracy of old tasks, i.e., the accuracy on all previously
forgotten classes in task T1, T2, · · · , Tt−1. There are 4 tasks in total and 20 classes are forgotten in each task.

β 0.01 0.05 0.1 0.15 0.2 0.25 0.5 0.75 1 5 10 20

H ↑ 60.9 71.5 71.6 72.2 71.8 72.0 71.5 72.0 71.8 70.1 70.5 66.3

Table S5. Ablation studies on β.

Grouping
Strategy

Accf ↓ Accr ↑ H ↑ Zero Group
Ratio

Block 1.97 71.06 71.43 0.17
Module 0.93 70.58 71.70 0.50
Matrix 1.51 70.36 71.30 0.58

Table S6. Effect of grouping strategies. The zero-group ratio
goes up when a more detailed grouping strategy is used.

which makes sense because each group has fewer parame-
ters and more flexibility.

C.4. More Experiments with Incomplete Replay

In Sec. 5.3, we consider the situation where we cannot ob-
tain the replay data of some classes. In this section, we
conduct more experiments with incomplete replay data on
other continual learning baselines. We keep our settings the
same as Fig. 5, where 30 classes need to be forgotten. In
the remaining 70 classes, some classes cannot be replayed.
Tab. S7 shows the results when 5, 10, 15, 20, 25, 30, 35
and 40 classes cannot be replayed. We can find that GS-
LoRA mitigates catastrophic forgetting to some extent and
achieves the best performance among all listed baselines.
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Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 75.00 - 73.97
L2∗ 0.04 56.81 64.13 21.06

EWC∗ 0.04 55.42 63.24 14.56
MAS∗ 0.00 55.20 63.11 16.78
Retrain 0.00 14.84 24.70 5.65
LoRA 0.04 70.07 71.81 49.66

GS-LoRA 0.04 70.07 71.81 55.43

(a) No replay data in 5 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 75.11 - 75.99
L2∗ 0.04 55.61 63.36 31.12

EWC∗ 0.00 51.41 60.56 16.19
MAS∗ 0.00 51.71 60.77 17.63
Retrain 0.00 13.48 22.79 4.68
LoRA 0.00 67.57 70.49 51.35

GS-LoRA 0.04 68.49 70.97 57.37

(b) No replay data in 10 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 74.83 - 76.44
L2∗ 0.04 51.65 60.71 27.32

EWC∗ 0.00 45.86 56.53 8.31
MAS∗ 0.04 47.07 57.43 12.07
Retrain 0.00 9.12 16.23 0.13
LoRA 0.00 66.64 69.98 54.12

GS-LoRA 0.00 66.85 70.09 58.14

(c) No replay data in 15 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 74.79 - 76.66
L2∗ 0.00 48.67 58.62 24.32

EWC∗ 0.00 41.32 52.95 6.55
MAS∗ 0.00 41.56 53.14 7.64
Retrain 0.00 8.14 14.66 0.10
LoRA 0.00 63.83 68.40 49.27

GS-LoRA 0.00 64.45 68.75 54.37

(d) No replay data in 20 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 74.81 - 75.88
L2∗ 0.00 44.53 55.50 22.14

EWC∗ 0.00 38.28 50.38 7.73
MAS∗ 0.00 37.81 49.97 8.24
Retrain 0.00 8.03 14.48 0.17
LoRA 0.00 64.40 68.72 54.41

GS-LoRA 0.04 66.12 69.68 59.87

(e) No replay data in 25 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 74.89 - 74.70
L2∗ 0.00 40.86 52.56 18.77

EWC∗ 0.00 33.56 46.11 5.07
MAS∗ 0.00 35.82 48.20 8.21
Retrain 0.00 7.13 13.00 0.50
LoRA 0.00 58.10 64.96 41.61

GS-LoRA 0.00 59.52 65.84 46.25

(f) No replay data in 30 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 74.82 - 75.02
L2∗ 0.00 37.32 49.55 18.23

EWC∗ 0.00 29.66 42.30 4.24
MAS∗ 0.00 30.04 42.68 5.66
Retrain 0.00 5.67 10.53 0.09
LoRA 0.00 52.27 61.15 34.16

GS-LoRA 0.00 56.47 63.93 43.46

(g) No replay data in 35 of the 70 remaining categories.

Accf ↓ Accr ↑ H ↑ Acc†r ↑

Pre-train 73.67 75.04 - 74.70
L2∗ 0.00 33.29 45.86 16.06

EWC∗ 0.00 25.08 37.41 4.15
MAS∗ 0.00 25.22 37.57 4.67
Retrain 0.00 6.02 11.13 0.30
LoRA 0.00 58.24 65.05 46.48

GS-LoRA 0.00 62.84 67.83 54.29

(h) No replay data in 40 of the 70 remaining categories.

Table S7. Experiment results with incomplete replay. Thirty classes are forgotten in all experiments. In the remaining 70 classes, only
some classes can be replayed. Each subtable shows the results with a different number of replay classes. Pre-train denotes the results
before forgetting. L2∗, MAS∗ and EWC∗ denote the original methods with a rehearsal buffer. LoRA denotes using LoRA to fine-tune
FFN modules in Transformer blocks without group sparse. Our method (GS-LoRA) is highlighted in color. We specifically evaluate the

accuracy of the classes without replay samples and report it as Acc†r .
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