
Appendix of “DETRs Beat YOLOs on Real-time Object Detection”

1. Experimental Settings

Dataset and metric. We conduct experiments on COCO [8]
and Objects365 [11], where RT-DETR is trained on COCO
train2017 and validated on COCO val2017 dataset.
We report the standard COCO metrics, including AP (aver-
aged over uniformly sampled IoU thresholds ranging from
0.50-0.95 with a step size of 0.05), AP50, AP75, as well as
AP at different scales: APS , APM , APL.
Implementation details. We use ResNet [5, 6] pretrained
on ImageNet [2, 10] as the backbone and the learning rate
strategy of the backbone follows [1]. In the hybrid encoder,
AIFI consists of 1 Transformer layer and the fusion block in
CCFF consists of 3 RepBlocks. We leverage the uncertainty-
minimal query selection to select top 300 encoder features
to initialize object queries of the decoder. The training
strategy and hyperparameters of the decoder almost follow
DINO [13]. We train RT-DETR with the AdamW [9] opti-
mizer using four NVIDIA Tesla V100 GPUs with a batch
size of 16 and apply the exponential moving average (EMA)
with ema decay = 0.9999. The 1× configuration means
that the total epoch is 12, and the final reported results adopt
the 6× configuration. The data augmentation applied during
training includes random {color distort, expand, crop, flip,
resize} operations, following [12]. The main hyperparame-
ters of RT-DETR are listed in Table A (refer to RT-DETR-
R50 for detailed configuration).

2. Comparison with Lighter YOLO Detectors

To adapt to diverse real-time detection scenarios, we develop
lighter scaled RT-DETRs by scaling the encoder and decoder
with ResNet50/34/18 [5]. Specifically, we halve the number
of channels in the RepBlock, while leaving other components
unchanged, and obtain a set of RT-DETRs by adjusting the
number of decoder layers during inference. We compare
the scaled RT-DETRs with the S and M models of YOLO
detectors in Table B. The number of decoder layers used
by scaled RT-DETR-R50/34/18 during training is 6/4/3 re-
spectively, and Deck indicates that k decoder layers are used
during inference. Our RT-DETR-R50-Dec2−5 outperform
all M models of YOLO detectors in both speed and accu-
racy, while RT-DETR-R18-Dec2 outperforms all S models.
Compared to the state-of-the-art M model (YOLOv8-M [4]),
RT-DETR-R50-Dec5 improves accuracy by 0.9% AP and
increases FPS by 36%. Compared to the state-of-the-art S
model (YOLOv6-S [7]), RT-DETR-R18-Dec2 improves ac-
curacy by 0.5% AP and increases FPS by 18%. This shows
that RT-DETR is able to outperform the lighter YOLO de-
tectors in both speed and accuracy by simple scaling.

Item Value

optimizer AdamW
base learning rate 1e-4
learning rate of backbone 1e-5
freezing BN True
linear warm-up start factor 0.001
linear warm-up steps 2000
weight decay 0.0001
clip gradient norm 0.1
ema decay 0.9999
number of AIFI layers 1
number of RepBlocks 3
embedding dim 256
feedforward dim 1024
nheads 8
number of feature scales 3
number of decoder layers 6
number of queries 300
decoder npoints 4
class cost weight 2.0
α in class cost 0.25
γ in class cost 2.0
bbox cost weight 5.0
GIoU cost weight 2.0
class loss weight 1.0
α in class loss 0.75
γ in class loss 2.0
bbox loss weight 5.0
GIoU loss weight 2.0
denoising number 200
label noise ratio 0.5
box noise scale 1.0

Table A. Main hyperparameters of RT-DETR.

3. Large-scale Pre-training for RT-DETR

We pre-train RT-DETR on the larger Objects365[11] dataset
and then fine-tune it on COCO to achieve higher perfor-
mance. As shown in Table C, we perform experiments on
RT-DETR-R18/50/101 respectively. All three models are
pre-trained on Objects365 for 12 epochs, and RT-DETR-R18
is fine-tuned on COCO for 60 epochs, while RT-DETR-R50
and RT-DETR-R101 are fine-tuned for 24 epochs. Experi-
mental results show that RT-DETR-R18/50/101 is improved



Model #Epochs #Params (M) GFLOPs FPSbs=1 APval APval
50 APval

75 APval
S APval

M APval
L

S and M models of YOLO Detectors
YOLOv5-S[3] 300 7.2 16.5 74 37.4 56.8 - - - -
YOLOv5-M[3] 300 21.2 49.0 64 45.4 64.1 - - - -
PPYOLOE-S[12] 300 7.9 17.4 218 43.0 59.6 47.1 25.9 47.4 58.6
PPYOLOE-M[12] 300 23.4 49.9 131 48.9 65.8 53.7 30.8 53.4 65.3
YOLOv6-S[7] 300 18.5 45.3 201 45.0 61.8 48.9 24.3 50.2 62.7
YOLOv6-M[7] 300 34.9 85.8 121 50.0 66.9 54.6 30.6 55.4 67.3
YOLOv8-S[4] - 11.2 28.6 136 44.9 61.8 48.6 25.7 49.9 61.0
YOLOv8-M[4] - 25.9 78.9 97 50.2 67.2 54.6 32.0 55.7 66.4

Scaled RT-DETRs
Scaled RT-DETR-R50-Dec2 72 36† 98.4 154 50.3 68.4 54.5 32.2 55.2 67.5
Scaled RT-DETR-R50-Dec3 72 36† 100.1 145 51.3 69.6 55.4 33.6 56.1 68.6
Scaled RT-DETR-R50-Dec4 72 36† 101.8 137 51.8 70.0 55.9 33.7 56.4 69.4
Scaled RT-DETR-R50-Dec5 72 36† 103.5 132 52.1 70.5 56.2 34.3 56.9 69.9
Scaled RT-DETR-R50-Dec6 72 36 105.2 125 52.2 70.6 56.4 34.4 57.0 70.0

Scaled RT-DETR-R34-Dec2 72 31† 89.3 185 47.4 64.7 51.3 28.9 51.0 64.2
Scaled RT-DETR-R34-Dec3 72 31† 91.0 172 48.5 66.2 52.3 30.2 51.9 66.2
Scaled RT-DETR-R34-Dec4 72 31 92.7 161 48.9 66.8 52.9 30.6 52.4 66.3

Scaled RT-DETR-R18-Dec2 72 20† 59.0 238 45.5 62.5 49.4 27.8 48.7 61.7
Scaled RT-DETR-R18-Dec3 72 20 60.7 217 46.5 63.8 50.4 28.4 49.8 63.0

Table B. Comparison with S and M models of YOLO detectors. The FPS of YOLO detectors are reported on T4 GPU with TensorRT FP16
using official pre-trained models according to the proposed end-to-end speed benchmark. † denotes the number of parameters during the
training, not inference.

Model #Epochs #Params (M) GFLOPs FPSbs=1 APval APval
50 APval

75 APval
S APval

M APval
L

RT-DETR-R18 60 20 61 217 49.2 (↑ 2.7) 66.6 53.5 33.2 52.3 64.8
RT-DETR-R50 24 42 136 108 55.3 (↑ 2.2) 73.4 60.1 37.9 59.9 71.8
RT-DETR-R101 24 76 259 74 56.2 (↑ 1.9) 74.6 61.3 38.3 60.5 73.5

Table C. Fine-tuning results on COCO val2017 with pre-training on Objects365.

by 2.7%/2.2%/1.9% AP on COCO val2017. The surpris-
ing improvement further demonstrates the potential of RT-
DETR and provides the strongest real-time object detector
for various real-time scenarios in the industry.

4. Visualization of Predictions with Different
Post-processing Thresholds

To intuitively demonstrate the impact of post-processing
on the detector, we visualize the predictions produced by
YOLOv8 [4] and RT-DETR using different post-processing
thresholds, as shown in Figure A and Figure B, respectively.
We show the predictions for two randomly selected samples
from COCO val2017 by setting different NMS thresholds
for YOLOv8-L and score thresholds for RT-DETR-R50.

There are two NMS thresholds: confidence threshold and
IoU threshold, both of which affect the detection results. The
higher the confidence threshold, the more prediction boxes

are filtered out and the number of false negatives increases.
However, using a lower confidence threshold, e.g., 0.001,
results in a large number of redundant boxes and increases
the number of false positives. The higher the IoU threshold,
the fewer overlapping boxes are filtered out in each round of
screening, and the number of false positives increases (the
position marked by the red circle in Figure A). Nevertheless,
adopting a lower IoU threshold will result in true positives
being deleted if there are overlapping or mutually occluding
objects in the input. The confidence threshold is relatively
straightforward to process predicted boxes and therefore easy
to set, whereas the IoU threshold is difficult to set accurately.
Considering that different scenarios place different emphasis
on recall and accuracy, e.g., the general detection scenario
requires the lower confidence threshold and the higher IoU
threshold to increase the recall, while the dedicated detection
scenario requires the higher confidence threshold and the
lower IoU threshold to increase the accuracy, it is neces-



Conf_thr = 0.001
IoU_thr = 0.3

Conf_thr = 0.001
IoU_thr = 0.7

Conf_thr = 0.25
IoU_thr = 0.7

Figure A. Visualization of YOLOv8-L [4] predictions with different NMS thresholds.

Score_thr = 0.001 Score_thr = 0.3 Score_thr = 0.5

Figure B. Visualization of RT-DETR-R50 predictions with different score thresholds.

sary to carefully select the appropriate NMS thresholds for
different scenarios.

RT-DETR utilizes bipartite matching to predict the one-
to-one object set, eliminating the need for suppressing over-
lapping boxes. Instead, it directly filters out low-confidence
boxes with a score threshold. Similar to the confidence
threshold used in NMS, the score threshold can be adjusted
in different scenarios based on the specific emphasis to
achieve optimal detection performance. Thus, setting the

post-processing threshold in RT-DETR is straightforward
and does not affect the inference speed, enhancing the adapt-
ability of real-time detectors across various scenarios.

5. Visualization of RT-DETR Predictions

We select several samples from the COCO val2017 to
showcase the detection performance of RT-DETR in com-
plex scenarios and challenging conditions (refer to Figure C



Figure C. Visualization of RT-DETR-R101 predictions in complex scenarios (score threshold=0.5).

Figure D. Visualization of RT-DETR-R101 predictions under difficult conditions, including motion blur, rotation, and occlusion (score
threshold=0.5).

and Figure D). In complex scenarios, RT-DETR demon-
strates its capability to detect diverse objects, even when
they are small or densely packed, e.g., cups, wine glasses,
and individuals. Moreover, RT-DETR successfully detects
objects under various difficult conditions, including motion
blur, rotation, and occlusion. These predictions substantiate
the excellent detection performance of RT-DETR.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Con-
ference on Computer Vision, pages 213–229. Springer, 2020.
1

[2] Cheng Cui, Ruoyu Guo, Yuning Du, Dongliang He, Fu Li,
Zewu Wu, Qiwen Liu, Shilei Wen, Jizhou Huang, Xiaoguang
Hu, Dianhai Yu, Errui Ding, and Yanjun Ma. Beyond self-



supervision: A simple yet effective network distillation alter-
native to improve backbones. CoRR, abs/2103.05959, 2021.
1

[3] Jocher Glenn. Yolov5 release v7.0. https://github.
com/ultralytics/yolov5/tree/v7.0, 2022. 2

[4] Jocher Glenn. Yolov8. https://github.com/
ultralytics/ultralytics/tree/main, 2023. 1,
2, 3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[6] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classifica-
tion with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 558–567, 2019. 1

[7] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng
Cheng, Bo Zhang, Zaidan Ke, Xiaoming Xu, and Xiangxiang
Chu. Yolov6 v3.0: A full-scale reloading. arXiv preprint
arXiv:2301.05586, 2023. 1, 2

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 1

[9] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2018. 1

[10] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115:211–252, 2015. 1

[11] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang
Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A
large-scale, high-quality dataset for object detection. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 8430–8439, 2019. 1

[12] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang,
Cheng Cui, Kaipeng Deng, Guanzhong Wang, Qingqing
Dang, Shengyu Wei, Yuning Du, et al. Pp-yoloe: An evolved
version of yolo. arXiv preprint arXiv:2203.16250, 2022. 1, 2

[13] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object de-
tection. In International Conference on Learning Representa-
tions, 2022. 1

https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/ultralytics/tree/main
https://github.com/ultralytics/ultralytics/tree/main

	. Experimental Settings
	. Comparison with Lighter YOLO Detectors
	. Large-scale Pre-training for RT-DETR
	. Visualization of Predictions with Different Post-processing Thresholds
	. Visualization of RT-DETR Predictions

