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6D Relative Object Pose Estimation

As introduced in the main paper, we are interested in ex-
tending the presented DVMNet to 6D relative object pose
estimation in our future work. Notably, we followed the
setting proposed in RelPose, RelPose++, and 3DAHV, as-
suming the availability of known object positions. Such
information provides a strong prior, making the relation
translation estimation less challenging. In this scenario,
the primary challenge is the detection of an unseen object
present in the query image. We achieve the zero-shot ob-
ject detection by utilizing the detection module presented in
Gen6D [21]. Specifically, the detection module predicts the
2D object center and 2D object scale, from which we com-
pute the 3D object translation, following the implementa-
tion of Gen6D. The 3D object rotation is estimated by em-
ploying our DVMNet. It is worth noting that our goal is
to achieve 6D object pose estimation in the single-reference
setup, while Gen6D’s detection module utilizes dense-view
references by default. Therefore, in our experiments, we
feed a single reference to the detection module as the tem-
plate.

We illustrate some preliminary results in Fig. 8 and
Fig. 9, visualizing the 6D object pose in the query image as
a 3D object bounding box. As shown in Fig. 8, the combina-
tion of Gen6D’s object detector and our DVMNet achieves
promising results in some cases. However, in some scenar-
ios shown in Fig. 9, Gen6D’s detector fails to effectively de-
tect the unseen object depicted in the query image. Notably,
the zero-shot object detection becomes more challenging in
the single-reference setting due to the large pose difference
between the query object and the reference. In this context,
we plan to investigate the applicability of other zero-shot
object detectors such as SAM [17] in future work.

Extension to Sparse-View References

As introduced in the literature [18, 27, 47], some down-
stream tasks such as 3D reconstruction often rely on sparse-
view references. Intuitively, our DVMNet can be seam-
lessly integrated into these tasks, as it operates effectively
with just a single reference. Therefore, we develop an ex-
periment on the CO3D dataset, evaluating DVMNet with
varying numbers of reference images, ranging from 1 to 7.

Specifically, given an unseen object during testing, we
randomly sample n images. These images are then fed into
the presented DVMNet, with one image designated as the
query and the remaining ones as references. The object pose
in the query image is simply derived from the resulting n�1

Figure 8. Visualization of 6D pose estimation for unseen objects
on LINEMOD [15]. The ground-truth 6D object pose and the
predicted pose in the query image are depicted as green and blue
3D bounding boxes, respectively.

Figure 9. Failure cases of 6D pose estimation for unseen objects
on LINEMOD [15].

relative object poses as
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where �Ri and Ri
r denote the i-th relative object pose

and reference pose, respectively, q(·) represents a function
that converts a rotation matrix to the 6D continuous rep-
resentation [53], and m(·) indicates the conversion from
the 6D continuous representation to a rotation matrix. We



# References 1 2 3 4 5 6 7
SuperGlue 71.47 73.08 68.72 65.90 64.54 63.24 61.74
3DAHV 28.44 29.29 28.20 27.21 26.40 24.85 24.76
DVMNet 19.95 18.38 16.79 16.21 15.73 14.99 14.93

Table 4. Extension to sparse-view references. The experiment is conducted on CO3D [25] with the number of reference images varying
from 1 to 7. The metric employed is the angular error between the computed query object pose and the ground truth.

Method SuperGlue 3DAHV DVMNet
Angular Error # 73.72 51.49 49.02

Table 5. Experimental results on the LINEMOD-O [5] dataset.
The mean angular errors are reported.

Method Acc @ 30� (%) "
RelPose 64.2
RelPose++ 77.0
3DAHV 83.5
PoseDiffusion 81.8
DVMNet 84.7

Table 6. Additional experimental results on CO3D. Acc @ 30�

is employed as a metric.

also evaluate the representative image-matching (Super-
Glue) and hypothesis-based (3DAHV) approaches in the
sparse-view scenario. We ensure a fair comparison by uti-
lizing the same strategy of query object pose estimation for
these methods.

We report the resulting angular errors in Table 4. It is ev-
ident that (i) the angular error of our DVMNet decreases as
more reference images are involved, and (ii) DVMNet con-
sistently yields the smallest angular error. This observation
demonstrates the promising compatibility of our approach
with sparse-view reference images.

Robustness to Occlusions
Given that object pose estimation is often challenged by oc-
clusions, we assess the robustness in scenarios involving
occlusions by conducting an experiment on the LINEMOD-
O [5] dataset. The testing data comprises three unseen ob-
jects, i.e., cat, driller, and duck. We report the mean angular
errors of the evaluated methods in Table 5. Our DVMNet
outperforms both the image-matching method, SuperGlue,
and the hypothesis-based method, 3DAHV, showcasing bet-
ter robustness against occlusions.

Additional Results on CO3D
As listed in Tabel 6, we report more results on CO3D, using
Acc @ 30� as a metric. Note that PoseDiffusion [37] takes
multiple views (> 2) as input by default, while all the other

evaluated methods employ two views. For a fair compari-
son, we evaluate PoseDiffusion on CO3D using two views.
Moreover, The pose parameters are iteratively updated 100
times during the denoising process in PoseDiffusion, mak-
ing the method time-consuming compared with our single
forward pass mechanism.
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