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In the paper, we have described the core techniques of
Dr2Net, and provided the key experiments that support our
contributions. In this supplementary material, we provide
additional details of the method and the experiment imple-
mentation, as well as extra experimental results.

A. Additional Details of the Method
A.1. Proof of invertibility of Dr2Net

Our proposed Dr2Net, as illustrated in Fig. 2 and Eq. 1
in the paper, is a reversible network, and mathematically,
an invertible function. In this section, we mathematically
prove its invertibility. Let’s rewrite the computation of the
ith module (Eq. 1 in the paper) in the following equation for
clarity. {

yi = β × xi−1

xi = Gi(xi−1) + yi−1.
(1)

Let’s make I = (xi−1, yi−1), which represents the input
activations to the ith module, and make O = (yi, xi), which
represents the output activations from the ith module. The
Jacobian matrix of Eq. 1 is computed as follows
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In Eq. 2, Id is the identity matrix of size d, where d is the
dimension of the activations xi, yi, xi−1, yi−1. Its determi-
nant is computed as

det(J) = det(β × Id) · det(Id) = βd. (3)

As described in the paper, β ̸= 0, and hence, the Jacobian
determinant det(J) is not zero. Therefore, the function in
Eq. 1 representing the ith module in Dr2Net is invertible.

If we stack multiple such reversible modules, repre-
sented by the above invertible functions, without insert-
ing any downsampling operations, we will form a stage

Figure 1. Fi blocks in a transformer network. If the pretrained
model is a transformer network, e.g., Swin [15] or ViT [7], the Fi

blocks in our Dr2Net are attention layers or MLP layers. The two
types of layers are interleaved, namely, if F1 is an attention layer,
then F2 is an MLP layer, and F3 is an attention layer, and so on.

in Dr2Net. One stage is mathematically composition of
such invertible functions, and therefore, the entire stage of
Dr2Net is also invertible. Between stages where there are
downsampling operations, we cache the activations after
each stage following [18, 28].

A.2. Illustration of the reverse computation

In Fig. 2 (c) in the paper, we have illustrated the architec-
ture of our Dr2Net with the F blocks and the two types of
residual connections. In Fig. 2 (a), we re-illustrate this for-
ward process by moving the F blocks along with their α-
weighted residual connection inside the G blocks for con-
ciseness and to be consistent with Eq. 1 in the paper. In
Fig. 2 (b), we illustrate its corresponding reverse process.

For detailed mathematical formulation of the forward
and reverse processes, we expand Eq. 1 in the paper as
Eq. 4, and Eq. 2 in the paper as Eq. 5 to illustrate the com-
putation in three modules. In the equations, Gi(xi−1) =
Fi(xi−1) + α× xi−1.

We can see from Fig. 2 (b) and Eq. 5 that during the
reverse computation, given xi and yi where i = 3, we
will compute all the intermediate activations xi, yi where
i = 0, 1, 2 module by module. In the ith module, xi−1 is
computed first using xi−1 = yi/β. Then xi−1 is used to
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Figure 2. Forward and reverse computation in Dr2Net. Gray arrows denote the pathway for xi, and pink arrows denote the pathway for
yi. Compared to Fig. 2 in the paper, we place the Fi blocks along with their α-weighted residual connections inside the module Gi.

Forward:
{

y1 = β × x0

x1 = G1(x0) + y0,
⇒

{
y2 = β × x1

x2 = G2(x1) + y1,
⇒

{
y3 = β × x2

x3 = G3(x2) + y2.
(4)

Reverse:
{

x0 = y1/β
y0 = x1 − G1(x0),

⇐
{

x1 = y2/β
y1 = x2 − G2(x1),

⇐
{

x2 = y3/β
y2 = x3 − G3(x2).

(5)

compute Gi(xi−1) to finally compute yi−1.

A.3. Illustration of different types of F blocks

The basic blocks Fi in Dr2Net, as illustrated in Fig. 2, can
be any network block that doesn’t change the feature di-
mensions. We use Fi and F interchangeably in the fol-
lowing text. The Fi blocks can be instantiated as different
types of blocks when the pretrained networks have different
architectures. In Fig. 1, we illustrate the Fi blocks of the
popular transformer architectures, Swin [15] and ViT [7].
In this case, the Fi blocks in our Dr2Net are attention lay-
ers or MLP layers. The two types of layers are interleaved,
namely, if F1 is an attention layer, then F2 is an MLP layer,
and F3 is an attention layer, and so on.

A.4. Gradient errors of different networks

In the paper, we have illustrated the gradient error levels of
video Swin-tiny [16] in Fig. 3. In this subsection, we plot
the error levels for another popular type of network Video
ViT [24], and provide more detailed explanations about the
error maps.

In Fig. 3, we plot the error levels of the two types of net-
works Video ViT-small (used in VideoMAE [24]) and Video
Swin-tiny, both with 12 layers. As we described in the pa-
per, customized back-propagation which computes gradi-

ents with recomputed intermediate activations through the
reverse process (Eq. 2 in the paper), is used to save mem-
ory for the reversible networks. This may introduce nu-
merical errors that are accumulated due to floating point
computation with limited precision. The idea of the gra-
dient error levels is to assess the precision of the cus-
tomized back-propagation compared to using the default
back-propagation that computes gradients with the activa-
tions cached in GPU memory. Concretely, the values in
the gradient-error-level maps in Fig. 3 are obtained as fol-
lows. Given one point α = α0 and β = β0, we obtain
one Dr2Net architecture that is adapted from Video ViT-
small or Video Swin-tiny. For this Dr2Net architecture, we
have two ways of implementations: (1) Dr2Net-A with cus-
tomized back-propagation, and (2) Dr2Net-B with default
back-propagation. We generate a random tensor, and feed it
into Dr2Net-A and Dr2Net-B separately, and compute two
versions of gradients respectively: GA and GB . We com-
pare GA and GB using torch.allclose(GA, GB , rtol=1e-
05, atol=atol), and record the lowest atol value that gives
torch.allclose() == True as the value at (α = α0, β = β0)
in the gradient-error-level maps.

As we see from Fig. 3, though Swin has slightly lower
error levels than ViT, the error levels of the two types of
networks are quite close, with the lowest in the bottom-left



Figure 3. Gradient error levels with different α and β values for Video ViT-small and Video Swin-tiny. The error levels of the two
types of networks are similar, with the lowest in the bottom-left corners, and the highest in the bottom-right corners. Swin has slight lower
error levels.

corners, and the highest in the bottom-right corners. When
we initialize Dr2Net from the pretrained ViT or Swin, we
set α = 1, β = 0.1, meaning the finetuning starts from the
top-right corners of the map, as we described in Sec. 3.3.2 in
the paper. Considering that the errors at the top-right corner
are too high to effectively train the networks, i.e., 10−4 and
10−5 for ViT and Swin respectively, we need the dynamic
finetuning strategy to adjust the values of α and β to reach
a point with sufficient precision, which is the bottom-left
region. It can be observed from the maps that the short-
est path to reach the bottom-left region with monotonically
non-increased error levels is along the diagonal, meaning
updating α and β simultaneously.

In addition, to make Dr2Net with new values of α and
β benefit from Dr2Net with previous values of α and β, we
need to update the values of α and β in small steps. We use
η to determine the updating frequency of both coefficients,
as described in Sec. 3.3.2 in the paper. Given the total num-
ber of epochs for which α and β are updated, a smaller η
value indicates the changes of α and β are more frequent
but more incremental each time. We have shown in Tab. 10
in the paper that a smaller η value results in higher perfor-
mance for the task of action recognition with the Video-
MAE [24] pretrained model.

B. Implementation Details
In this section, we provide the implementation details of the
downstream tasks we have experimented in the paper.

B.1. Temporal action detection

Temporal action detection (TAD) [12, 25, 28] is a typical
long-form video understanding task, that needs to process
a long sequence of video frames to identify all the action
instances. Given a long video, the task of TAD outputs the
category as well as the start and end timestamps of each ac-

tion. A representative dataset for this task is the largescale
dataset ActivityNet-v1.3 [4], that uses mean Average Preci-
sion (mAP) at 10 tIoU thresholds in the range [0.5, 0.95] as
well as average mAP as the evaluation metric.

In our experiment, we use a recent TAD method
VSGN [27] as the detector, and Video Swin-tiny pretrained
with Kinetics-400 classification as the backbone. For all
the experiments of this task in Tab. 2 in the paper, we use
the same setup as follows. As network input, we use 512
input frames, evenly sampled from the entire video regard-
less of the original video duration. The frame resolution is
224 × 224. We use the augmentation following [28]. The
backbone learning rate is 1e−5, the detector learning rate is
1e− 4, and the batch size is 2. The total number of epochs
is 20. For Dr2Net, the coefficient updating frequency is 3
epochs, and the updating ends at the 10th epoch.

B.2. Video object segmentation

Video object segmentation aims to separate the foreground
objects from the background region of a video at the pixel
level [2, 6]. Recently, referring video object segmentation
(RVOS) has drawn more attention [14, 19, 20]. Given a
sequence of video frames and a text query, RVOS aims to
segment all objects in the video referred by the input text
prior to determining the referred instance [9]. In this paper,
we evaluated our method on the dataset A2D-Sentence [9],
which contains 3,754 videos with 8 action classes.

In the experiments, we utilize the method MTTR [3] as
the segmentation head and the Kinetics-400 [5] pretrained
Video Swin-tiny as the backbone. In MTTR, the window
size is set to 10, and the total batch size is set to 6. The video
frames are resized such that the short side is at least 320
pixels and the long side at most 576 pixels. The model is
trained for 70 epochs. For Dr2Net, the coefficient updating
frequency is set to 2 iterations, and the updating ends at the



10th epoch.

B.3. Action recognition

Action recognition (AR) [8, 10, 16, 24, 29] is a fundamen-
tal task in video understanding, which aims to classify a
video clip into an action category. Though it doesn’t re-
quire as long input sequences as TAD, its input is still 3D
video data and it uses spatio-temporal attention with Trans-
formers, which consumes a large amount of GPU memory.
Therefore, memory-efficient finetuning is important. If we
can save memory consumption during training, then we will
be able to feed more input frames, use larger batch sizes,
and train larger networks, which will lead to higher perfor-
mance.

For the experiments, we adopt the widely used large-
scale video dataset Something-Something V2 [10], which
contains around 169k videos for training and 20k videos for
validation, with 174 motion-centric action classes. We re-
port the top-1 and top-5 accuracies as the evaluation met-
rics. We have two sets of experiments on the task of
action recognition, Set-A with the Video ViT backbones
pretrained with VideoMAE [24] (Sec. 4.1 in the paper),
and Set-B with Image ViT backbones pretrained with DI-
NOv2 [21] (Sec. C.1). Both sets of experiments use the
dataset Something-Something V2 [10] and the finetuning
recipe of VideoMAE [24] for the downstream finetuning.
For both sets, the input video resolution is 224× 224× 16,
the batch size is 384, the learning rate 1e − 3, and the total
number of epochs is 40. For Dr2Net, the coefficient updat-
ing frequency is 2 iterations, and the updating ends at the
5th epoch.

B.4. Object detection

Object detection (OD) involves identifying and locating po-
tential objects within an image. A notable example of state-
of-the-art object detection approaches is DINO [26], which
enhances the performance of the DETR-based framework
by denoisng its anchor boxes. For the downstream task
of object detection in our work, we use DINO as the de-
tection head and employ Swin Transformer [15] as the im-
age backbone. We evaluate the model’s performance using
the mean Average Precision (mAP) metric on the COCO
val2017 dataset [13].

In our experiments, we follow the training receipt of the
original DINO. The Swin Transformer is pretrained on the
ImageNet-22k dataset with the image classification task.
We utilize 4 scales of feature maps to conduct the experi-
ments. The short side of an input image is randomly resized
between 480 and 800 pixels, and the long side is resized to
at most 1333. The total batch size is 16, and the number of
training epochs is 12. For Dr2Net, the updating frequency
of the two coefficients is 2 iterations, and the updating ends
at the 5th epoch.

B.5. 3D point cloud segmentation

3D point cloud segmentation (PCS) is the process of classi-
fying point clouds into multiple meaningful regions, where
the points in the same region have the same label. We
conduct extensive experiments in S3DIS [1], which is the
mostly-used benchmark for large-scale point cloud segmen-
tation. S3DIS consists of 6 areas with 271 rooms, where
area-5 is used in testing and the others are used in training.
Each area is a large point cloud of a building. We used the
same preprocessing as Pix4Point [23] to extract the point
cloud per room, and leveraged sphere sampling to sample
16, 384 points as a batch in training and testing. Following
the standard practice [22], our model is optimized using the
cross-entropy loss with label smoothing of 0.1, the AdamW
optimizer [17] with a learning rate 1e-4, a cosine learning
rate scheduler, 10 warmup epochs, weight decay 1e-5, the
batch size 8, and 600 total training epochs. We use data aug-
mentation including rotation, scaling, color auto-contrast,
and color dropping. For Dr2Net, the coefficient updating
frequency is 10 iterations, and the updating ends at the 50th

epoch.

C. Supplementary Experiments
C.1. More pretraining methods

In the paper, we have shown the effectiveness of our Dr2Net
on models with different pretraining methods, includ-
ing fully-supervised classification, self-supervised learning
with MAE [11] and VideoMAE [24]. In this subsection, we
demonstrate our results with one more pretraining method
DINOv2 [21].

DINOv2 is a self-supervised learning method that pre-
train an image model on a largescale image dataset. We
use it for the downstream task action recognition on the
dataset Something-Something v2 [10]. Since the architec-
ture of the DINOv2 model is ViT [7], which is agnostic of
input data dimensions, we can directly apply the same ViT
architecture to the video data and compute spatio-temporal
attention. Considering that the patch embedding layer was
pretrained for images which are 2D data, we inflate those
convolutional kernels to 3D during initialization to per-
form tube embedding instead of patch embedding. In ad-
dition, we interpolate the position embedding to match the
video dimension. Our implementation of finetuning the DI-
NOv2 model on Something-Something v2 follows Video-
MAE [24] for the setup of the spatio-temporal attention,
tube embedding, and the training recipe.

We demonstrate the memory consumption and the recog-
nition accuracy in Tab. 1. Compared to conventional end-to-
end finetuning (Row 2), our Dr2Net (Row 5) only uses less
than 1/4 memory, and its accuracy surprisingly surpasses
conventional finetuning by a large margin. Considering that
the accuracies in the table are taken from the results of the



Table 1. Memory and accuracy comparison on action recogni-
tion using DINOv2 [21] pretrained models. The backbone ViT-
small is used. Conventional: conventional non-reversible back-
bone; Reversible: previous reversible backbone [28]; Hard: di-
rectly initializing the reversible network using pretrained parame-
ters.

Downstream training Top-1 acc Top-5 acc Mem (GB)
Conventional Frozen∗ 33.10% / /

End-to-end 55.18% 82.79% 34.2
Reversible [28] Scratch 14.31% 33.96% 8.0

Hard 37.29% 66.22% 8.0
Dr2Net End-to-end 64.98% 88.90% 8.0

∗ Frozen: linear probing results from the DINOv2 [21] paper.

40th epoch following VideoMAE [24], the training might
not have fully converged. Still, that shows our Dr2Net at
least converges faster. This might be due to the domain gap
between the image pretraining and the video downstream
task, and is worth further exploration.

C.2. Using larger networks

Our Dr2Net can significantly reduce the GPU memory con-
sumption during finetuning. Using the saved GPU mem-
ory, we can support a larger backbone network to reach
higher accuracy. We experiment with larger backbones for
the tasks of action recognition with DINOv2 [21] pretrained
models, action recognition with VideoMAE [24] pretrained
models, and object detection with DINO [26]. We demon-
strate the accuracy and the corresponding GPU memory
consumption in Tab. 2, Tab. 3 and Tab. 4, respectively.

For the first two tasks (Tab. 2 and Tab. 3), which use
ViT [7] as the backbone, we apply Dr2Net to ViT-base in
addition to ViT-small. Using the larger backbone ViT-base
(Row 3), the accuracy is obviously increased for both tasks.
Compared to both conventional finetuning (Row 1), Dr2Net
uses still less than half of the memory (16.6 GB vs. 34.2
GB, 13.0 GB vs. 29.3 GB), but reaches much higher perfor-
mance.

For the task of object detection [26], we apply Dr2Net to
Video Swin-small and Video Swin-base in addition to Video
Swin-tiny. Using the larger backbone Swin-small (Row 3),
the accuracy is obviously increased, while the memory is
almost the same (30.1 GB). Using a even larger backbone
Swin-small, the accuracy is dramatically higher than con-
ventional finetuning (54.7% vs. 51.3%), while memory cost
is only 60% of it (32.4 GB vs. 54.0 GB).
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