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Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning

Supplementary Material

A. Classifier training with PLM001

In Eq. (4) of main paper, we discussed the empirical risk002
for estimating the noisy class posterior and the single-to-003
multiple transition matrix. In this supplementary material,004
we will provide a detailed discussion on how to train a con-005
sistent classifier using PLM and loss correction techniques006
[6].007

As discussed in the main paper, the classification task008
aims to learn a classifier f : X → C that maps each009
instance xi to its corresponding label yi. Given the net-010
work for estimating the clean class posterior as g : X →011
Rc, the classifier can be represented as follows: f(x) =012
argmaxi∈C gi(x). Here, gi(x) refers to the i-th element013
of the vector g(x), which represents the estimated prob-014
ability P̂ (Y = i|X = x). Given a noisy dataset D̃ =015
{(xi, ỹi)}ni=1, the empirical risk of the classifier is defined016
as:017

R̃(f) =
1

n

n∑
i=1

ℓ1(f(xi), ỹi), (1)018

where ℓ1 denotes a classification loss. Loss correction019
methods typically introduce a transition matrix T (x) to es-020
tablish a connection between the posterior of the noisy and021
clean classes. This allows training a clean classifier by min-022
imizing the empirical risk with noisy dataset. Based on ex-023
isting loss correction methods, the noise transition matrix024
T (x) can be estimated, and we have P (Ỹ |X = x) =025
T (x)⊤P (Y |X = x). Let the noisy class posterior es-026
timation network be denoted as ge : X → Rc where027
gei (x) = P (Ỹ = i|X = x). The noisy class classifier028
fe(x) can be represented as:029

fe(x) = argmax
i∈C

gei (x) = argmax
i∈C

(T (x)⊤g)i(x). (2)030

Therefore, the empirical risk in loss correction methods can031
be expressed as:032

R̃(g) =
1

n

n∑
i=1

ℓ1(f
e(xi), ỹi). (3)033

By minimizing this loss it is possible to construct classifier-034
consistent algorithms.035

We denote the part-level labels estimation network as036
gp : X → Rc where gpi (x) = P (Y ′

i = 1|X = x).037
Given the single-to-multiple transition matrix U(x) where038
Uij(x) = P (Y ′

j = 1|Ỹ = i,X = x), the part-level multi-039

(a)

(b)

Figure 1. Illustration of neural network training using PLM. (a)
Utilizing PLM for estimating the noisy class posterior while si-
multaneously training the matrix estimation network. (b) Fixing
the matrix estimation network (with ”*”) and integrating loss cor-
rection method to facilitate noisy label learning.

label classifier fp(x) can be represented as: 040

fp(x) = {i|gpi (x) >
1

2
} = {i|(U(x)⊤ge)i(x) >

1

2
}

= {i|(U(x)⊤T (x)⊤g)i(x) >
1

2
}.

(4) 041

042

Similarly, given a dataset {(xi,yi)}ni=1 with multiple 043
part-level labels, the empirical risk of the training with part- 044
level labels is defined as: 045

R′(fp) =
1

n

n∑
i=1

ℓ2(f
p(xi),y

′
i). (5) 046

where ℓ2 denotes a multi-label classification loss. 047

Then, the empirical risk of the joint training framework 048
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Algorithm 1 PLM training framework

Input: Noisy training dataset D, noise transition matrix
T (x) derived from existing methods.

Output: Classifier model f .
1: Minimize a classification loss to learn a labeling classi-

fier f l from D.
2: Obtain the set of sub-instances S by cropping the in-

stances in D.
3: Construct multi-labels by using f l to label the sub-

instances in S.
4: Train a single-to-multiple transition matrix estimation

network gu by minimizing the loss defined in Eq. (4)
of the main paper.

5: Fix the parameters of gu, set ge(x) = (T (x)⊤g)(x),
then minimize the Eq. (4) of the main paper with up-
dated gu to optimize g.

6: Obtain the classifier f(x) = argmaxi∈C gi(x). Here,
gi(x) represents the i-th element of the network output
vector g(x).

7: return Optimized classifier f .

is defined as:049

R̂(g, fp) =
1

2
(R̃(g) +R′(fp))

=
1

2n

n∑
i=1

[ℓ1(f
e(xi), ỹi) + ℓ2(f

p(xi),y
′
i)].

(6)050

We minimize the empirical risk to obtain a robust classi-051
fier. The training process for the single-to-multiple transi-052
tion matrix is depicted in Figure 1a, in which we achieve053
it by minimizing the empirical risk defined in Eq. (4) of054
the main paper. The training of the classifier is illustrated055
in Figure 1b, where we keep the trained matrix estimation056
network fixed and combine it with the noise transition ma-057
trix obtained through existing loss correction methods. We058
then optimize the empirical risk discussed before for train-059
ing. The training procedure is outlined concisely in Algo-060
rithm 1.061

In Section 4.3 of the main paper, we have conducted a062
comparison of performance using various matrix estimation063
methods. More specifically, for PLM-F, PLM-D, and PLM-064
V, we adopted the matrix estimation techniques outlined in065
Forward [6], Dual-T [10], and VolMinNet [5], respectively.066
Subsequently, we minimize the empirical risk as defined in067
Eq. (6). For PLM-R, we combined PLM with T-Revision068
[8] and introduced the slack variable ∆T , then fe(x) in Eq.069
(2) can be modified to070

fer(x) = argmax
i∈C

((T (x) + ∆T )⊤g)i(x). (7)071

Following T-Revision, we also incorporated a importance072
reweighting strategy. The minimized empirical risk of073

PLM-R is defined as follows: 074

R̂(fer, fp) =
1

2n

n∑
i=1

[wℓ1(f
er(xi), ỹi) + ℓ2(f

p(xi),y
′
i)],

(8) 075

where w =
gyi (xi)

((T (x)+∆T )⊤g)yi (xi)
denotes the weight. 076

B. Identifiability of single-to-multiple transi- 077

tion matrix 078

In the main paper, we introduce a brand-new single-to- 079
multiple transition matrix. In this section, we will dis- 080
cuss the identifiability of this transition matrix. Specifically, 081
regarding P (Y ′|x) = U⊤(x)P (Ỹ |x), when the matrix 082
U(x) is unconstrained, the following issue arises: there ex- 083
ists an infinite number of non-singular matrices Q ∈ Rc×c 084
such that 085

P (Y ′|x) = (U⊤(x)Q)(Q−1P (Ỹ |x)). (9) 086

This situation emerges from the network training process in 087
joint training framework of Section 3.4: 088

gp(x) = gu(x)ge(x), (10) 089

where gp(x), ge(x) and gu(x) correspond to the esti- 090
mates of part-level labels, noisy class posterior, and the 091
matrix respectively. The specific concern appears to cen- 092
ter on the scenario where gp(x) = P̂ (Y ′|x) and ge(x) = 093
Q−1P̂ (Ỹ |x), yielding gu(x) = U⊤(x)Q ̸= U⊤(x). 094

To address this issue, we employ joint training to si- 095
multaneously utilize noisy labels and part-level labels for 096
optimizing both ge and gp. More precisely, ge is directly 097
guided by Ỹ , aligning with a coarse ge(x) = P̂ (Ỹ |x), 098
while gp(x) is supervised by Y ′ to meet gp(x) = P̂ (Y ′|x). 099
This dual supervision constrains gu(x) to comply with 100
P̂ (Y ′|x) = gu(x)P̂ (Ỹ |x), resulting in gu(x) = Û(x)⊤. 101
This means that the potential scenario, where Q leads to 102
ge(x) = Q−1P̂ (Ỹ |x) and then gu(x) = Û(x)⊤Q, is pre- 103
emptively negated through supervision from Ỹ . Therefore, 104
during training with the joint framework, the matrix’s iden- 105
tifiability is ensured. This approach also echoes the matrix 106
estimation strategy presented in MEIDTM [1]. 107

C. Analysis of time complexity 108

In the main paper, we introduced additional modules to aid 109
in estimating the noisy class posterior, which to some ex- 110
tent increases the algorithm’s time complexity. Therefore, 111
in this section, we will discuss the time complexity and ef- 112
ficiency of the proposed method in comparison to our base- 113
line model (Forward [6]). 114

Let us assume that the time complexity for training the 115
baseline model for one epoch is denoted as O(T ), and the 116
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time complexity for making predictions on the entire train-117
ing set is O(P ). Additionally, the introduction of an extra118
noise transition matrix layer contributes an additional time119
complexity of O(E). Considering Forward as the base-120
line, the time complexity of the proposed method can be121
expressed as O(e1T+cP+e2(2T+E)+e3(T+P+2E)),122
where e1, e2, and e3 represent the number of epochs for the123
annotator, transition matrix estimator, and classifier train-124
ing, respectively, and c indicates the cropping frequency.125

For comparison, the time complexity of the Forward126
method is expressed as O(e4T +P +e5(T +E)), where e4127
and e5 represent the number of epochs for the anchor esti-128
mation network and classifier training, respectively. For the129
sake of facilitating comparison, we assume that each section130
underwent an equal number of training epochs e, i.e., e =131
e1 = e2 = e3 = e4 = e5. The complexity of the proposed132
method is represented as O(4eT + (c+ e)P + (1+ 2e)E),133
whereas the complexity of the Forward method is denoted134
as O(2eT + P + eE). Then, the transition matrix can be135
considered as a noise adaptation layer with fixed parame-136
ters, which has a total of c2 parameters where c represents137
the number of categories. In comparison, deep neural net-138
works have a much larger number of parameters. Taking139
Resnet-18 as an example, it has a total of 11.7M parame-140
ters. Therefore, in this paper and in most cases, we have141
T << P and T << E. Consequently, we can simplify the142
two computational complexities to O(4eT + (c+ e)P ) and143
O(2eT +P ). Since the training process involves backprop-144
agation and gradient computation, it takes more time than145
the prediction process, leading to T > P . Additionally, in146
this paper, the number of pruning iterations satisfies e ≫ c.147
As a result, the computational complexity of the proposed148
method follows O(4eT + (c + e)P ) < O(6eT ), and the149
Forward follows O(2eT +P ) > O(2eT ). Hence, under the150
assumption of setting the same number of epochs in each151
stage, the time overhead of the proposed method should be152
less than three times that of the Forward. Additionally, for153
the purpose of evaluating the efficiency of our approach, we154
conducted a comparison of the code’s runtime based on the155
CIFAR-10 dataset.

Table 1. The time consumption of PLM and Forward (used as the
baseline).

Method Time Consumption (min)

PLM 35.56
Forward 19.21

156

Analysis and experiments indicate that our approach sig-157
nificantly enhances the performance of noisy label learning158
(NLL), with only a linear increase in time consumption.159

D. Analysis of cropping strategies 160

The instance cropping method is related to the multi- 161
labeling of the proposed approach. In the paper, we se- 162
lected the four corners and the central part of the image data 163
for cropping and determined the cropping size through em- 164
pirical analysis on the validation set. Table 2 displays the 165
experimental results of different cropping sizes on CIFAR- 166
10 data with sym-50% noise, and we additionally attempted 167
two other cropping strategies. The cropping strategies used 168
in table 2 are as follows: the uniform strategy involves five 169
uniform crops at the four corners and center of the image 170
as used in the paper. The random strategy entails five crops 171
at random positions. The emphasized strategy constructs 172
two sub-instances based on feature emphasis, with one sub- 173
instance masking the top emphasized number of features 174
and the other sub-instance masking the remaining features. 175

Table 2. The classification accuracy (expressed in percentage)
with different cropping sizes and strategies.

Size Uniform Random Emphasized

9 83.58 ± 0.45 83.42 ± 0.86 84.14 ± 0.59
36 83.80 ± 0.31 83.40 ± 0.55 84.24 ± 0.29
81 82.69 ± 2.32 83.81 ± 0.54 84.48 ± 0.47

144 83.17 ± 0.91 83.81 ± 0.39 84.19 ± 0.42
256 83.49 ± 0.95 83.40 ± 0.34 84.28 ± 0.86
361 83.62 ± 0.31 83.65 ± 0.74 84.32 ± 0.46
484 84.99 ± 0.40 84.36 ± 0.32 84.24 ± 0.61
625 85.08 ± 0.16 83.97 ± 0.72 84.26 ± 0.57
784 84.24 ± 0.24 83.91 ± 0.70 84.47 ± 0.33

The emphasized strategy demonstrates superior perfor- 176
mance and displays enhanced stability, suggesting the po- 177
tential for further refinement of cropping strategies in the 178
context of NLL classification, as discussed in Section 5 of 179
the paper. Furthermore, within the established cropping 180
strategy, the method shows robustness to the cropping size. 181

E. Visualization of focused features 182

In Figure 2, we employ a visualization approach to pro- 183
vide a visual interpretation of the effectiveness of the PLM 184
method. The STL-10 [2] dataset is used for visualization 185
purposes. In Figure 2b, it is shown that when the labels 186
contain noise, the network emphasizes the background re- 187
gion associated with those labels. Consequently, the model 188
tends to overfit to the noise, hindering the network’s ability 189
to learn features that truly capture the distinctive character- 190
istics of the instances. As a result, the estimation of the pos- 191
terior for the noisy labels becomes excessively confident. 192
As depicted in Figure 2c, removing the overemphasized fea- 193
tures through cropping effectively redirects the model’s at- 194
tention to other more informative features. By generating 195
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(a)

(b)

(c)

(d)

Figure 2. Illustration of class activation maps (CAM) for overemphasized region correction: the highlighted area (with more intense red
color) indicates the emphasized area of a model trained from noisy labels. (a) Original images with noisy labels: car, bird, dog, monkey,
ship, deer. (b) CAMs for estimating noisy class posterior by the classifier. (c) CAMs when excluding the overemphasized regions after
cropping. (d) CAMs for estimating noisy class posterior by the model after PLM training.

labels associated with these features and providing addi-196
tional supervised information during network training, the197
network can focus on more diverse features. As shown in198
Figure 2d, compared to Figure 2b, the network pays more199
attention to object-relevant features.200

F. Combination with state-of-the-art methods201

In this section, we conbine and compare our proposed202
framework with different state-of-the-art (SOTA) methods203
to further validate the effectiveness of our approach. In the204
Section 4 of the main paper, we mentioned that we did not205
compare PLM with SOTA methods. This is because these206
methods incorporate a lot of robust learning strategies to207
achieve better empirical performance, while our method fo-208
cuses solely on enhancing the noisy class posterior estima-209
tion to assist in building a classifier-consistent algorithm.210
To explore whether our method can flexibly combine with211
these robust learning strategies to achieve improved classifi-212
cation performance, we conbine and compare our proposed213
method with SOTA methods using different strategies, as214

detailed in Table 3 and 4. Specifically, in Table 3, we com- 215
pare our method with following two representative SOTA 216
methods on the CIFAR-10 and CIFAR-100 datasets: (1) 217
DivideMix [4], a method that combines data augmentation, 218
label selection, co-training, semi-supervised learning, and 219
pseudo-labeling strategies; (2) CTRR [12], a method based 220
on contrastive learning strategies that constructs a regular- 221
ization function. Besides, in Table 4, we compare PLM with 222
following two methods designed for instance-dependent 223
noise on the CIFAR-10 dataset: (1) BLTM [9], a method 224
using deep neural networks and bayes optimal labels to es- 225
timate transition matrix; (2) CausalNL [11], a method based 226
on a structural causal framework. We combine PLM with 227
these methods to verify its complementary effects. In the 228
combination with DivideMix (named PLM DivideMix), we 229
introduce an additional loss term based on Eq. (4) of the 230
main paper to the selected labeled samples. In the combi- 231
nation with CTRR and CausalNL (named PLM CTRR and 232
PLM CausalNL), we modify the cross-entropy loss term of 233
their loss function to Eq. (4) of the main paper. In the com- 234
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Table 3. The average classification accuracy and standard deviation (expressed in percentage) across five trials under various synthetic
noisy label settings. The better classification accuracy is indicated in bold.

CIFAR-10 CIFAR-100
Sym-20% Sym-50% Pair-20% Pair-45% Sym-20% Sym-50% Pair-20% Pair-45%

CTRR 93.02 ± 0.12 84.96 ± 1.12 92.81 ± 0.27 68.54 ± 1.81 71.61 ± 0.64 65.53 ± 0.46 69.94 ± 0.36 46.17 ± 0.70
PLM CTRR 93.16 ± 0.36 86.59 ± 0.26 92.96 ± 0.36 78.56 ± 1.71 72.06 ± 0.26 66.00 ± 0.56 70.44 ± 0.33 46.84 ± 0.52

DivideMix 95.71 ± 0.47 94.77 ± 0.06 92.65 ± 0.38 68.67 ± 1.95 76.72 ± 0.31 73.12 ± 0.30 76.62 ± 0.25 47.01 ± 1.02
PLM DivideMix 96.06 ± 0.19 95.12 ± 0.18 96.01 ± 0.07 76.27 ± 1.13 79.96 ± 0.14 74.20 ± 0.40 79.93 ± 0.18 47.19 ± 0.88

Table 4. The average classification accuracy and standard devia-
tion (expressed in percentage) across five trials on the CIFAR-10
dataset with instance-dependent noise settings. The better classifi-
cation accuracy is indicated in bold.

IDN-20% IDN-30% IDN-40% IDN-50%

BLTM 76.70 ± 0.55 72.12 ± 0.59 65.44 ± 1.01 56.77 ± 0.75
PLM BLTM 89.73± 0.22 87.47 ± 0.50 84.40 ± 0.84 76.28 ± 3.80

CausalNL 79.66 ± 0.38 76.58 ± 0.46 72.86 ± 0.43 67.75 ± 1.15
PLM CausalNL 81.44 ± 0.38 78.86 ± 0.92 75.52 ± 0.38 73.20 ± 1.06

bination with BLTM (named PLM BLTM), we use the tran-235
sition matrix estimated in BLTM. The remaining settings236
are consistent with those in Section 4 of the main paper.237

The experimental results demonstrate that our approach238
can integrate with SOTA methods which rely on com-239
plex robust learning strategies, improving their classifica-240
tion performance. The improvement occurs even though241
these methods do not explicitly require the explicit estima-242
tion of noisy class posteriors. This could be because, during243
the process of estimating noisy class posteriors using PLM,244
the richer supervised information assists the model in learn-245
ing more reasonable representations that reflect the instance246
characteristic.247

G. Analysis of transition matrix estimation248

In this section, we aim to validate the assistance of PLM in249
transition matrix estimation error. In the experiments pre-250
sented in Table 5, we modified the strategy of noisy class251
posterior estimation used in the most basic transition ma-252
trix estimation method Forward [6] to PLM’s strategy. The253
results indicate that PLM can help in transition matrix esti-254
mation by reducing the error in estimating noisy class pos-255
terior.256

Table 5. The average errors and standard deviation of transition
matrix estimation across five trials on the CIFAR-10 dataset. The
lower error is indicated in bold.

Sym-20% Sym-50% Pair-20% Pair-45%

Forward 0.35 ± 0.01 0.60 ± 0.12 0.27 ± 0.01 0.74 ± 0.03
PLM Forward 0.16 ± 0.04 0.32 ± 0.06 0.23 ± 0.01 0.62 ± 0.04

H. Experiments on real-world dataset 257

In the main paper, we compared the experimental results 258
on the real-world dataset Clothing1M. To further illustrate 259
the performance of PLM on real-world datasets, we com- 260
pared the results on the Animal-10N [7] dataset in the Table 261
6. Animal-10N consists of 50,000 noisy samples for train- 262
ing and 5,000 clean samples for testing. We selected 10% 263
of the training set as the validation set. We use the SGD 264
optimizer and cosine learning rate decay strategy to train 265
the network, with an initial learning rate 10−2, weight de- 266
cay of 10−2, and momentum of 0.9. The backbone and 267
other settings are the same as InstanceGM [3]. The results 268
further demonstrate that PLM can more effectively handle 269
real-world noise. 270

Table 6. Accuracy on the Animal-10N benchmark. The baseline
results and experimental settings refer to InstanceGM. The better
classification accuracy is indicated in bold.

Method CE Dropout SELFIE PLC Nested InstanceGM PLM

Acc. (%) 79.4 81.3 81.8 83.4 81.3 84.6 85.08
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