
Supplementary Materials

1. Detailed Description of Textual Feature-Based Baseline Methods

In this section, we supplement the implementation details of the textual feature space baseline methods (B1/B2) in Sec. 4.1 .

1.1. POS (Part of Speech) Tagging Analysis

The POS (Part of Speech) tagging is a process to mark up the words in text format for a particular part of a speech based
on its definition and context. The “part of speech” is a typical low-level textual feature, which could potentially reflect the
characteristic of the representative textual subset. We conduct the POS tagging analysis on COCO annotations. We use the
NLTK’s (Nature Language Toolkit) tokenizer and POS tagging tool to analyze the POS distribution. We present the POS
that occupies more than 1% in the legend. The “NN” represents “singular noun”, “DT” represents “determiner” (e.g., “my”),
“IN” represents “Preposition and conjunction” (e.g., “at/in”), “JJ” represents “Adjective”, “.” represents the punctuation,
“VBG/VBZ” represents different forms of verbs, “NNS” represents “Proper and plural noun”, and “CC” represents “conjunction
of coordinating” (e.g., “that/which”). As demonstrated in Fig. 1, the POS distributions of the entire set and subsets of 100
items with high/low standalone KD are quite similar. Therefore, it is not feasible to select representative subsets according
to this characteristic.

All Prompts Prompts with
High standalone KD

Prompts with
Low standalone KD

NN
DT
IN
JJ
.

VBG
NNS
VBZ
CC

Figure 1. Comparison of pos tagging analysis for the entire COCO annotations, 100 item subsets with high/low standalone KD.

1.2. Semantic Class Diversity

To effectively illustrate the inability to select a representative subset through semantic class diversity, we conduct compre-
hensive experiments on this matter. We partition CLIP/BERT features into 10 clusters using the K-means algorithm, ensuring
that prompts in each cluster encompass similar semantic information categories (e.g., humans, cats, etc). Subsequently, we
selected N ′/10 prompts from each cluster based on the Euclidean distance to the cluster centroid (near or far), or through
random selection. As depicted in Tab. 1 and Tab. 2, all the methods yields results similar to random sampling. Therefore,
ensuring semantic class diversity does not lead to an improvement in performance.

1

Methods N ′ = 10 N ′ = 100

Train Test Train Test

RS 0.355 0.346 0.706 0.692

Near Centroid 0.455 0.451 0.474 0.570
Far Centroid 0.551 0.539 0.617 0.713

RS-each cluster 0.341 0.313 0.617 0.682

Table 1. Comparisons of the Kendall’s Tau of CLIP-Score for subsets acquired by clustering CLIP features.

Methods N ′ = 10 N ′ = 100

Train Test Train Test

RS 0.355 0.346 0.706 0.692

Near Centroid 0.057 0.335 0.490 0.540
Far Centroid 0.285 -0.116 0.659 0.545

RS-each cluster 0.228 0.251 0.686 0.651

Table 2. Comparisons of the Kendall’s Tau of CLIP-Score for subsets acquired by clustering Bert features.

Algorithm 1: Greedy Search Algorithm
Input: Whole textual dataset P = {pi|i = 1, ..., N}, The corresponding features of dataset F = {fi|i = 1, ..., N}, The
mean µall and covariance Σall of multivariate Gaussian distribution of F ;
Ouput: Subsets P̂ of size N ′;
Random Initialize P̂ ← pk, F̂ ← fk(1 ≤ k ≤ N);
for i← 2 to N ′ do

index = INF,Dmin = INF ;
for fj in F − F̂ do
Fj = F̂ ∪ fj ;
Calculate µj and Σj of Fj ;
// KL distance between Fj and F
Dj = KL(µj ,Σj , µall,Σall)
if Dmin > Dj then

index = j,Dmin = Dj ;

P̂ = P̂ ∪ pindex, F̂ = F̂ ∪ findex;

return P̂

1.3. Statistical Property Similarity

As shown in Algo. 1, we design a greedy search algorithm that selects the prompt that minimizes the KL divergence
between the CLIP feature distribution of the subset and the entire set in each iteration. Since the algorithm requires computing
the KL divergence, the feature distribution is assumed to be a multivariate Gaussian distribution. To better fit the feature
distribution, we expand the Gaussian distribution into the Gaussian mixture distribution. It can be depicted in Fig. 2, when the
Gaussian Mixture distribution contains five Gaussian functions, it effectively fits the features. Then, we run the algorithm in
each Gaussian function, identifying N ′/5 prompts in each function (a total of N ′ prompts). We show the results of different
items in Tab. 3. It was evident that matching the statistical property similarity does not improve the ranking outcome.

2

Methods
N ′ = 100 N ′ = 200 N ′ = 500 N ′ = 1000

Train Test Train Test Train Test Train Test

RS 0.706 0.692 0.784 0.763 0.857 0.829 0.896 0.867

Gaussian 0.714 0.696 0.764 0.791 0.873 0.847 0.913 0.872
Gaussian Mixture 0.565 0.420 0.809 0.770 0.799 0.802 0.881 0.880

Table 3. Comparisons of the Kendall’s Tau of CLIP-Score for subsets acquired by statistical property similarity.

(a) Gaussian (b) Gaussian mixture

Figure 2. T-SNE Feature Visualization of Gaussian and Gaussian Mixture (#component = 5) distributions fitted to all features.

2. FlahEval’s Capability of Estimating Model Scores
In some scenarios, users may require the exact metric scores of models rather than the relative model rankings. FlashEval

also supports fitting model scores using a small subset of N ′ by searching for the mean square error. As shown in Fig. 3
and Fig. 4, we demonstrate a comparison of our method against random sampling for model scores prediction. It is evident
that our method can accurately estimate model scores even with smaller N ′ and it generalizes well to testing models across
three sub-tasks.

3

 random split

item size

item size

 M
SE

 E
rro

r
 M

SE
 E

rro
r

item size

 M
SE

 E
rro

r

item size

 M
SE

 E
rro

r

 across model variances

item size

 M
SE

 E
rro

r

item size

 M
SE

 E
rro

r

 across schedules

(a) Train

(b) Test

score of CLIP

Figure 3. Comparisons with random sampling of the estimation quality for CLIP-Score on COCO dataset. Small MSE Error is better.

4

 random split

item size

item size

 M
SE

 E
rro

r
 M

SE
 E

rro
r

item size

 M
SE

 E
rro

r

item size

 M
SE

 E
rro

r

 across model variances

item size

 M
SE

 E
rro

r

item size

 M
SE

 E
rro

r

 across schedules

(a) Train

(b) Test

score of CLIP diffusionDB

Figure 4. Comparisons with random sampling of the estimation quality for CLIP-Score on DiffusionDB dataset. Small MSE Error is
better.

3. Analysis of Alternative Approaches to Acquire Representative Subsets
In the main paper, we recognize that “some subsets with high KD has large estimation error”, which reflects such sets lack

precise estimation of the performance. Therefore, an intuitive question arises “could we use the estimation error as the metric
for recognizing representative subsets?”. We could measure the “estimation error” by the MSE (Mean Squared Error) loss
between the ground-truth performance (averaged on the entire set) and the subset’s performance S

′

j =
∑

i∈I
1
N ′Sij for each

model setting. It could be described as follows (Nm is the number of model settings):

ΩEA =
1

Nm

Nm∑
i=1

(Ŝj − S
′

j)
2. (1)

In this section, we investigate this assumption. We discuss some intuitive alternative approaches to acquire representative
subsets based on estimation error (“prompts with least estimation error”,“sets with least estimation error”) and demonstrate
their failure. Furthermore, We analyze the underlying reason for their failure and why the FlashEval search method is necessary.

As shown in Fig. 5, we visualize the scores of all prompts in COCO dataset across two randomly selected models. It
is noticeable that scores obtained by prompts for a certain model generally follows a Gaussian distribution. The mean of
the gaussian distribution is the “ground-truth” model performance evaluation across the entire set. Therefore, if there exists
prompts/subsets that could correctly approximate the mean of the gaussian distribution for all models, using the prompt/subsets
for evaluation will have both high KD values and low estimation error.

Choose prompts with lowest estimation errors. To validate this existence of such prompts, we separately select 50
prompts with high KD values and 50 prompts with low estimation errors, examining their performance in the other criterion.
From Tab. 4, we observe that prompts with high KD values have large estimation errors, while prompts with low estimation
errors also exhibit small KD values. We conclude that single prompt could not simultaneously satisfy high KD and
estimation error, which means that “prompt that approximates the mean for all models” does not exist. Therefore,
simply choosing prompts with least estimation error to construct subsets is not feasible.

Choose subsets with lowest estimation errors. Similarly, we design experiments to validate the existence of the subsets
that could precisely estimate the performance of each model. We generate 10,000,000 random samplings at various N ′ values,
and select a set with the highest KD value and a set with the lowest estimation error. From Fig. 6, it is evident that the set we

5

discovered with the lowest error reaches only a KD value of roughly around 0.7 in training models when N ′ = 10. However,
the subset with the highest KD value which b3-set discovered can achieve KD values above 0.8. Therefore, simply choosing
subsets with least estimation error to construct subsets is also not feasible.

The underlying reason for their failure: As discussed above, in Fig. 6, we can see that when N ′ is small, the subset
chosen based on estimation error performs poorly, indicating a lack of consistency between KD values and estimation errors.
However, as N increases, the subsets acquired by “error-set” achieves relatively high KD. To further validate the above
findings, we present the KD values and estimation errors with respect to N ′ in Fig. 7. We discover that the MSE error decreases
sharply with N ′ < 500. Such phenomenon reveals the potential reason for “high KD and low estimation error could not be
simultaneously satisfied for a smaller N ′”. When the N ′ is small, the estimation error is still relatively large (larger than 0.002),
in which case, relatively lower estimation error does not guarantee higher KD. However, as N ′ increases, the estimation error
is sufficiently small to ensure high correlation between lower estimation error and higher KD.

CLIP-Score

Fr
eq

ue
nc
y

Figure 5. Visualization of CLIP-Score of all prompts for two models. The x-axis representing CLIP-Score values and the y-axis indicating
the count of prompts achieving that value.

item size item size

KD
 v

al
ue

KD
 v

al
ue

(a). ranking train models (b). ranking test models

Figure 6. Comparisons of set-based baselines using Kendall’s Tau for CLIP-Score on COCO dataset. The shaded area are standard
errors.

6

(a). variation of KD values (b). variation of estimation errors

Figure 7. The variation of average KD values and estimation errors with increasing N ′. The blue dots represent the average values
obtained from 100,000 random samplings at the current N ′.

Methods Kendall’s Tau↑ Estimation Error↓
All prompts mean 0.269/0.201 0.142/0.138

prompts with low errors 0.391/0.245 0.052/0.062
prompts with high KD values 0.678/0.463 0.117/0.117

Table 4. The average performance of the top 50 prompts in one criterion on the other criterion for training/testing models. The “All
prompts mean” represents the averaged value for all independent prompts.

7

4. Qualitative Results of FlashEval Acquired Subsets
In this section, we present and analyze the FlashEval searched textual subset, to demonstrate the searched subset effectively

distinguishes different model settings. We choose the N ′ = 10 item subset for the COCO annotations. Tab. 5 and Tab. 6
respectively outline the prompts included in the representative set for CLIP and ImageReward. Additionally, we show the
images generated by prompts across different models in Fig. 8 and Fig. 9. The upper row displays the generated images under
different schedules of the model “dreamlike”, sorted by the ground-truth metric values (the right has higher metric values). As
could be seen, the image visual quality for this prompt (“A plate with rice topped with scallops and a side of broccoli.”) aligns
with the ground-truth performance. It verifies that the searched representative subsets contain prompts correctly reflecting the
model performance. Similarly, the lower row demonstrates that when using the same schedule, the prompt could also correctly
rank different models. Aside from the CLIP-Score, we also present the generated images picked by human-preference-based
metric ImageReward in Fig. 9, similar alignment could be witnessed.

item size prompts in the representative set

N ′ = 10

"A plate with rice topped with scallops and a side of broccoli."
"A decorative Asian lantern sculpture in the garden with flower ornaments."

"A man is riding his skateboard down the road."
"A close-up of a plate of food that has been eaten."

"A small pizza in the middle of a table."
"A white plate topped with a hot dog, french fries and condiments."

"A black and white cat sitting on top of a pile of clothes."
A giraffe and a zebra are on the grass near trees & cars.

"A busy bus station with ramp going downstairs."
"Heavily loaded green truck with passengers on back in roadway in urban area."

Table 5. Prompts in the representative set of CLIP-Score when N ′ = 10 on COCO dataset.

item size prompts in the representative set

N ′ = 10

"Two giraffes standing around on the grassy plains."
"there is someone holding a remote in there hand "

"A man adjusts numbers at a tennis match."
"A skateboarder catches major air during this stunt."

"A little boy in a yellow shirt feeding a giraffe. "
"An old building with two rusty, very old pick up trucks parked in front."

"A little girl sitting on top of a bed next to a lamp."
"An old rusty fire hydrant standing on a cracked sidewalk."

"A man driving a car across an airport runway."
"The german shepherd is guarding the front of the barred door,"

Table 6. Prompts in the representative set of ImageReward when N ′ = 10 on COCO dataset.

8

“A plate with rice topped with scallops and a side of broccoli.”

dreamlike

PNDM-10step PNDM-50step PNDM-20step DDIM-50step

DDIM
20step

small-sd1.5 sd1.2-6bit sd1.2 dreamlike

Figure 8. Visualization of images generated by the prompt from the representative set of CLIP-Score across various models. The first
row represents variations among different schedules in the same model, while the second row depicts variances among different model
architectures or parameters under the same schedule.

9

“An old rusty fire hydrant standing on a cracked sidewalk.”

sd1.5

PNDM-10step DDIM-10step DDIM-20step DPM-20step

DDIM
20step

sd1.2-6bit sd1.2 sd2.1 dreamlike

Figure 9. Visualization of images generated by the prompt from the representative set of ImageReward across various models. The
first row represents variations among different schedules in the same model, while the second row depicts variances among different model
architectures or parameters under the same schedule.

10

5. Verification of the Generelization Ability of FlashEval
As mentioned in Table.2 and Table.3 in the main paper, we design 3 distinct model settings train-test split to verify the

generalization ability of FlashEval. They act as 3 diverse subtask to test the generalization ability across random settings,
across models, and across schedules. In this section, we firstly provide a detailed description of the 3 train-test split. Then, we
present the results on these subtasks on COCO annotations (Fig. 10, Fig. 11, Fig. 12, Fig. 13, and Fig. 14) and DiffusionDB
datasets (Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 19).

5.1. Detailed List of Models

In Tabs. 7 to 9, we present detailed lists of models encompassed by both the training and testing models for each sub-
task. We conduct the search on the training models and validate the ranking correlation on the testing models to verify the
generalizaiton ability of FlashEval. The “random split” randomly splits the model setting zoo into two halves, the models of
the training and testing splits have diverse model variants, solver, and timesteps. The “across model variants” uses only 4
models (SD-1.4, SD-1.5, SD-1.5-6bit,SD-2.1) as the training models, and the rest as the test models. The “across schedules”
uses the “PNDM-10”, “DDIM-10”, “DDIM-20”, “DDIM-50” as the train models.

5.2. Results under Different Model Settings Split on COCO annotations

We present the comparative results of all methods across various metrics in Figs. 10 to 14. It is evident that FlashEval
consistently outperforms others in all scenarios, which demonstrates the generalization ability of FlashEval across diverse
model or schedules.

5.3. Results under Different Model Settings Split on DiffusionDB

As mentioned in Sec. 5.1 of the main paper, due to the substantial size of the complete diffusionDB dataset, it is not feasible
to iterate through all prompts (2,000,000) to get the ground-truth performance. Considering the cost, we select a relatively
large amount of samples (5000) and use the averaged performance on them as the proxy “ground-truth” of DiffusionDB
(treating the 5,000 prompts as the “whole set” to further condense it into smaller representative subset).

As could be witnessed from the Figs. 15 to 19, our acquired subsets achieves superior evaluation compared with the random
sample baseline (adopted by recent literature Lee et al. [41]) quality for different metrics across different model splits.

11

training models testing models

model solver step model solver step

stablediffusion1.2 PNDM 10 stablediffusion1.2 PNDM 20
stablediffusion1.2 DDIM 10 stablediffusion1.2 PNDM 50
stablediffusion1.2 DDIM 20 stablediffusion1.2-6bit DDIM 10
stablediffusion1.2 DDIM 50 stablediffusion1.2-8bit DDIM 10
stablediffusion1.2 DPM 10 stablediffusion1.2-8bit DPM 10
stablediffusion1.2 DPM 20 stablediffusion1.2-8bit DPM 20

stablediffusion1.2-6bit DDIM 20 stablediffusion1.4 PNDM 20
stablediffusion1.2-6bit DDIM 50 stablediffusion1.4 PNDM 50
stablediffusion1.2-6bit DPM 10 stablediffusion1.4 DDIM 20
stablediffusion1.2-6bit DPM 20 stablediffusion1.4 DPM 20
stablediffusion1.2-8bit DDIM 20 stablediffusion1.4-6bit DDIM 20
stablediffusion1.2-8bit DDIM 50 stablediffusion1.4-6bit DPM 20

stablediffusion1.4 PNDM 10 stablediffusion1.4-8bit DDIM 10
stablediffusion1.4 DDIM 10 stablediffusion1.4-8bit DDIM 20
stablediffusion1.4 DDIM 50 stablediffusion1.4-8bit DDIM 50
stablediffusion1.4 DPM 10 stablediffusion1.4-8bit DPM 20

stablediffusion1.4-6bit DDIM 10 stablediffusion1.5 PNDM 20
stablediffusion1.4-6bit DDIM 50 stablediffusion1.5 PNDM 50
stablediffusion1.4-6bit DPM 10 stablediffusion1.5 DDIM 50
stablediffusion1.4-8bit DPM 10 stablediffusion1.5 DPM 10

stablediffusion1.5 PNDM 10 stablediffusion1.5-6bit DDIM 10
stablediffusion1.5 DDIM 10 stablediffusion1.5-6bit DDIM 50
stablediffusion1.5 DDIM 20 stablediffusion1.5-6bit DPM 20
stablediffusion1.5 DPM 20 stablediffusion1.5-8bit DDIM 20

stablediffusion1.5-6bit DDIM 20 stablediffusion1.5-8bit DPM 10
stablediffusion1.5-6bit DPM 10 stablediffusion1.5-8bit DPM 20
stablediffusion1.5-8bit DDIM 10 small-stablediffusion1.5 PNDM 20
stablediffusion1.5-8bit DDIM 50 small-stablediffusion1.5 PNDM 50

small-stablediffusion1.5 PNDM 10 small-stablediffusion1.5 DPM 20
small-stablediffusion1.5 DDIM 10 stablediffusion2.1 PNDM 10
small-stablediffusion1.5 DDIM 20 stablediffusion2.1 PNDM 20
small-stablediffusion1.5 DDIM 50 stablediffusion2.1 DDIM 10
small-stablediffusion1.5 DPM 10 stablediffusion2.1 DDIM 50

stablediffusion2.1 PNDM 50 stablediffusion2.1 DPM 10
stablediffusion2.1 DDIM 20 stablediffusion2.1 DPM 20

dreamlike-photoreal PNDM 20 dreamlike-photoreal PNDM 10
dreamlike-photoreal DDIM 10 dreamlike-photoreal PNDM 50
dreamlike-photoreal DDIM 20 dreamlike-photoreal DPM 10
dreamlike-photoreal DDIM 50 dreamlike-photoreal DPM 20

Table 7. The detailed list of models in sub-task with "random split".

12

training models testing models

model solver step model solver step

stablediffusion1.4 PNDM 10 stablediffusion1.2 PNDM 10
stablediffusion1.4 PNDM 20 stablediffusion1.2 PNDM 20
stablediffusion1.4 PNDM 50 stablediffusion1.2 PNDM 50
stablediffusion1.4 DDIM 10 stablediffusion1.2 DDIM 10
stablediffusion1.4 DDIM 20 stablediffusion1.2 DDIM 20
stablediffusion1.4 DDIM 50 stablediffusion1.2 DDIM 50
stablediffusion1.4 DPM 10 stablediffusion1.2 DPM 10
stablediffusion1.4 DPM 20 stablediffusion1.2 DPM 20
stablediffusion1.5 PNDM 10 stablediffusion1.2-6bit DDIM 10
stablediffusion1.5 PNDM 20 stablediffusion1.2-6bit DDIM 20
stablediffusion1.5 PNDM 50 stablediffusion1.2-6bit DDIM 50
stablediffusion1.5 DDIM 10 stablediffusion1.2-6bit DPM 10
stablediffusion1.5 DDIM 20 stablediffusion1.2-6bit DPM 20
stablediffusion1.5 DDIM 50 stablediffusion1.2-8bit DDIM 10
stablediffusion1.5 DPM 10 stablediffusion1.2-8bit DDIM 20
stablediffusion1.5 DPM 20 stablediffusion1.2-8bit DDIM 50

stablediffusion1.5-6bit DDIM 10 stablediffusion1.2-8bit DPM 10
stablediffusion1.5-6bit DDIM 20 stablediffusion1.2-8bit DPM 20
stablediffusion1.5-6bit DDIM 50 stablediffusion1.4-6bit DDIM 10
stablediffusion1.5-6bit DPM 10 stablediffusion1.4-6bit DDIM 20
stablediffusion1.5-6bit DPM 20 stablediffusion1.4-6bit DDIM 50
stablediffusion1.5-8bit DDIM 10 stablediffusion1.4-6bit DPM 10
stablediffusion1.5-8bit DDIM 20 stablediffusion1.4-6bit DPM 20
stablediffusion1.5-8bit DDIM 50 stablediffusion1.4-8bit DDIM 10
stablediffusion1.5-8bit DPM 10 stablediffusion1.4-8bit DDIM 20
stablediffusion1.5-8bit DPM 20 stablediffusion1.4-8bit DDIM 50

stablediffusion2.1 PNDM 10 stablediffusion1.4-8bit DPM 10
stablediffusion2.1 PNDM 20 stablediffusion1.4-8bit DPM 20
stablediffusion2.1 PNDM 50 small-stablediffusion1.5 PNDM 10
stablediffusion2.1 DDIM 10 small-stablediffusion1.5 PNDM 20
stablediffusion2.1 DDIM 20 small-stablediffusion1.5 PNDM 50
stablediffusion2.1 DDIM 50 small-stablediffusion1.5 DDIM 10
stablediffusion2.1 DPM 10 small-stablediffusion1.5 DDIM 20
stablediffusion2.1 DPM 20 small-stablediffusion1.5 DDIM 50

small-stablediffusion1.5 DPM 10
small-stablediffusion1.5 DPM 20

dreamlike-photoreal PNDM 10
dreamlike-photoreal PNDM 20
dreamlike-photoreal PNDM 50
dreamlike-photoreal DDIM 10
dreamlike-photoreal DDIM 20
dreamlike-photoreal DDIM 50
dreamlike-photoreal DPM 10
dreamlike-photoreal DPM 20

Table 8. The detailed list of models in sub-task with "across model variances".

13

training models testing models

model solver step model solver step

stablediffusion1.2 PNDM 10 stablediffusion1.2 PNDM 20
stablediffusion1.2 DDIM 10 stablediffusion1.2 PNDM 50
stablediffusion1.2 DDIM 20 stablediffusion1.2 DPM 10
stablediffusion1.2 DDIM 50 stablediffusion1.2 DPM 20

stablediffusion1.2-6bit DDIM 10 stablediffusion1.2-6bit DDIM 50
stablediffusion1.2-6bit DDIM 20 stablediffusion1.2-6bit DPM 20
stablediffusion1.2-6bit DPM 10 stablediffusion1.2-8bit DDIM 50
stablediffusion1.2-8bit DDIM 10 stablediffusion1.2-8bit DPM 20
stablediffusion1.2-8bit DDIM 20 stablediffusion1.4 PNDM 20
stablediffusion1.2-8bit DPM 10 stablediffusion1.4 PNDM 50

stablediffusion1.4 PNDM 10 stablediffusion1.4 DPM 10
stablediffusion1.4 DDIM 10 stablediffusion1.4 DPM 20
stablediffusion1.4 DDIM 20 stablediffusion1.4-6bit DDIM 50
stablediffusion1.4 DDIM 50 stablediffusion1.4-6bit DPM 20

stablediffusion1.4-6bit DDIM 10 stablediffusion1.4-8bit DDIM 50
stablediffusion1.4-6bit DDIM 20 stablediffusion1.4-8bit DPM 20
stablediffusion1.4-6bit DPM 10 stablediffusion1.5 PNDM 20
stablediffusion1.4-8bit DDIM 10 stablediffusion1.5 PNDM 50
stablediffusion1.4-8bit DDIM 20 stablediffusion1.5 DPM 10
stablediffusion1.4-8bit DPM 10 stablediffusion1.5 DPM 20

stablediffusion1.5 PNDM 10 stablediffusion1.5-6bit DDIM 50
stablediffusion1.5 DDIM 10 stablediffusion1.5-6bit DPM 20
stablediffusion1.5 DDIM 20 stablediffusion1.5-8bit DDIM 50
stablediffusion1.5 DDIM 50 stablediffusion1.5-8bit DPM 20

stablediffusion1.5-6bit DDIM 10 small-stablediffusion1.5 PNDM 20
stablediffusion1.5-6bit DDIM 20 small-stablediffusion1.5 PNDM 50
stablediffusion1.5-6bit DPM 10 small-stablediffusion1.5 DPM 10
stablediffusion1.5-8bit DDIM 10 small-stablediffusion1.5 DPM 20
stablediffusion1.5-8bit DDIM 20 stablediffusion2.1 PNDM 20
stablediffusion1.5-8bit DPM 10 stablediffusion2.1 PNDM 50

small-stablediffusion1.5 PNDM 10 stablediffusion2.1 DPM 10
small-stablediffusion1.5 DDIM 10 stablediffusion2.1 DPM 20
small-stablediffusion1.5 DDIM 20 dreamlike-photoreal PNDM 20
small-stablediffusion1.5 DDIM 50 dreamlike-photoreal PNDM 50

stablediffusion2.1 PNDM 10 dreamlike-photoreal DPM 10
stablediffusion2.1 DDIM 10 dreamlike-photoreal DPM 20
stablediffusion2.1 DDIM 20
stablediffusion2.1 DDIM 50

dreamlike-photoreal PNDM 10
dreamlike-photoreal DDIM 10
dreamlike-photoreal DDIM 20
dreamlike-photoreal DDIM 50

Table 9. The detailed list of models in sub-task with "across schedules".

14

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

CLIP

Figure 10. Comparisons with all baselines of the Kendall’s Tau for CLIP-Score on COCO dataset.

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

Figure 11. Comparisons with all baselines of the Kendall’s Tau for ImageReward on COCO dataset.

15

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

HPS

Figure 12. Comparisons with all baselines of the Kendall’s Tau for HPS on COCO dataset.

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

Aesthetic

Figure 13. Comparisons with all baselines of the Kendall’s Tau for Aesthetic on COCO dataset.

16

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

FID

Figure 14. Comparisons with all baselines of the Kendall’s Tau for FID on COCO dataset.

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

diffuisonDB clip

Figure 15. Comparisons with metric space baselines of the Kendall’s Tau for CLIP-Score on DiffusionDB dataset.

17

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

diffuisonDB ImageReward

Figure 16. Comparisons with metric space baselines of the Kendall’s Tau for ImageReward on DiffusionDB dataset.

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

diffuisonDB HPS

Figure 17. Comparisons with metric space baselines of the Kendall’s Tau for HPS on DiffusionDB dataset.

18

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

diffuisonDB Aesthetic

Figure 18. Comparisons with metric space baselines of the Kendall’s Tau for Aesthetic on DiffusionDB dataset.

 random split

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across model variances

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 across schedules

(a) Train

(b) Test

diffuisonDB FID

Figure 19. Comparisons with metric space baselines of the Kendall’s Tau for FID on DiffusionDB dataset.

19

	. Detailed Description of Textual Feature-Based Baseline Methods
	. POS (Part of Speech) Tagging Analysis
	. Semantic Class Diversity
	. Statistical Property Similarity

	. FlahEval's Capability of Estimating Model Scores
	. Analysis of Alternative Approaches to Acquire Representative Subsets
	. Qualitative Results of FlashEval Acquired Subsets
	. Verification of the Generelization Ability of FlashEval
	. Detailed List of Models
	. Results under Different Model Settings Split on COCO annotations
	. Results under Different Model Settings Split on DiffusionDB

