
Appendix of “GraCo: Granularity-Controllable Interactive Segmentation”

1. Limitations

In this work, we introduce Granularity-Controllable in-
teractive segmentation (GraCo) that allows users to con-
trol the segmentation granularity to resolve ambiguity. Al-
though we develop a novel and flexible paradigm and
achieve inspiring results, the proposed method still has
some limitations: (i). Due to the randomness in the inter-
action signals generated by the multi-granularity loop sim-
ulation in the any-granularity mask generator, which causes
the object-level pre-trained IS model to generate semanti-
cally inconsistent parts or noisy boundaries, providing in-
accurate granularity-controllability guidance. (ii). Consid-
ering the variance in the computational cost of running the
mask engine at different granularities, we choose to gen-
erate proposals offline to improve the efficiency of paral-
lel computing. As a result, there is a trade-off between
storage space and granularity abundance. The online fine-
tuning paradigm of granularity-controllability is a future ex-
ploration to overcome this limitation.

2. Additional Experiments and Analysis

2.1. IoU@1 Analysis

Considering that the segmentation mask after the first click
directly affects the user experience, we evaluate the IoU@1
of the IS methods. As shown in Table A, we evaluate the
IoU@1 of SimpleClick [6], SAM [5] and our GraCo. For
SimpleClick, we report the results of the pre-trained model
and the model fine-tuned with part annotations. From the
results, we conclude that fine-tuning with part annotations
leads to a significant decrease in IoU@1 on object-level
benchmarks. In contrast, the results on part-level bench-
marks are effectively improved, indicating that the model
tends to perform fine-grained part segmentation after fine-
tuning. For SAM, we present the results for single-output
and multi-output (default 3) respectively. We observe that
SAM exhibits excellent performance. Specifically, the first
click performance of SAM is significantly superior than
SimpleClick, especially when selecting the optimal mask
from multiple outputs for each instance. Moreover, the
IoU@1 obtained by multi-output outperforms single-output
considerably, as denoted by the green-highlighted incre-
ment. This enhances SAM’s user experience. For our
GraCo, we present the results of fine-tuning with part an-
notations and AGG-generated mask proposals respectively.
We observe that GraCo w/ AGG is superior than GraCo w/
GT. We argue that this is because AGG generates a wealth
of mask proposals to cover a wider range of granularity. Our

GraCo achieves comparable first click performance to SAM
on all benchmarks at a low cost.

2.2. More Ablations

Proposal Sampling. We also conduct an ablation study on
the proposal sampling. We compare the performance of uni-
form sampling to inverse-proportional sampling with iden-
tical mask proposals (cf. Table B). The results show that
the inverse-proportional sampling method achieves a supe-
rior performance on all benchmarks, which indicates that
the method enables the IS model to learn uniformly from
any-granularity proposals in GCL.
LoRA. We supplement the ablation study on LoRA, as
shown in Table C. We employ identical AGG-generated
mask proposals to train our GraCo equipped with ViT-B
as backbone. We set the LoRA rank as 4, 8, 16, 32, re-
spectively, and evaluate the performance on both levels of
benchmarks. Based on the results, we conclude that the per-
formance of GraCo is not sensitive to the LoRA rank.
Granularity Definition. We evaluate the performance of
the two definitions on part-level benchmarks, which indi-
cates that employing only scale granularity leads to a slight
decrease (cf. Table D). This demonstrates the necessity of
the two types of granularity for definition.

3. Dataset Description
We evaluate both object-level and part-level benchmarks
to demonstrate the performance of the IS model in multi-
granularity scenarios. The details of these datasets are de-
scribed as follows.
• GrabCut [9]. The dataset contains 50 images, each con-

taining a single instance.
• Berkeley [7]. The dataset contains 96 images with 100

instances and some of them are more challenging for seg-
mentation.

• SBD [3]. The dataset contains 2,857 images with 6,671
challenging instances for evaluation and not be used for
training.

• DAVIS [8]. The dataset contains 50 high-quality videos
and we use 345 frames for evaluation.

• PascalPart [1]. The dataset provides part annotations of
20 Pascal VOC [2] classes, a total of 193 part categories.
As PascalPart contains a large number of parts, we ran-
domly select 5 out of 16 classes (excluding boat, chair,
dining table, and sofa which do not have part annotations)
to reduce the computational cost of conducting interactive
simulations during evaluation. The selected classes are
train, bicycle, cow, aeroplane, and bus in experiments.



Method Backbone GrabCut Berkeley SBD DAVIS PascalPart PartImageNet

SimpleClick [6] ViT-B 0.90 0.85 0.74 0.76 0.17 0.30
SimpleClick¶ [6] ViT-B 0.47 (↓ 0.43) 0.43 (↓ 0.42) 0.42 (↓ 0.32) 0.31 (↓ 0.45) 0.48 (↑ 0.31) 0.49 (↑ 0.19)
SimpleClick [6] ViT-L 0.91 0.84 0.82 0.78 0.18 0.30
SimpleClick¶ [6] ViT-L 0.48 (↓ 0.43) 0.46 (↓ 0.38) 0.46 (↓ 0.36) 0.38 (↓ 0.40) 0.53 (↑ 0.35) 0.54 (↑ 0.24)

SAM [5] ViT-B 0.55 0.56 0.45 0.41 0.43 0.42
SAM⋆ [5] ViT-B 0.90 (↑ 0.35) 0.88 (↑ 0.32) 0.75 (↑ 0.30) 0.74 (↑ 0.33) 0.57 (↑ 0.14) 0.55 (↑ 0.13)
SAM [5] ViT-L 0.61 0.61 0.50 0.45 0.44 0.42
SAM⋆ [5] ViT-L 0.94 (↑ 0.33) 0.90 (↑ 0.29) 0.80 (↑ 0.30) 0.78 (↑ 0.33) 0.57 (↑ 0.13) 0.56 (↑ 0.14)

GraCo w/ GT ViT-B 0.86 0.80 0.66 0.62 0.52 0.53
GraCo w/ AGG ViT-B 0.89 (↑ 0.03) 0.84 (↑ 0.04) 0.72 (↑ 0.06) 0.70 (↑ 0.08) 0.53 (↑ 0.01) 0.55 (↑ 0.02)
GraCo w/ GT ViT-L 0.81 0.76 0.66 0.56 0.56 0.55
GraCo w/ AGG ViT-L 0.93 (↑ 0.12) 0.89 (↑ 0.13) 0.81 (↑ 0.15) 0.75 (↑ 0.19) 0.55 (↓ 0.01) 0.58 (↑ 0.03)

Table A. IoU@1 Analysis on both object and part level benchmarks. ¶ represents fine-tuning the model utilizing the part annotation,
and ⋆ represents selecting the best matching result from multiple predictions. SimpleClick [6] and our GraCo are trained on SBD [3] and
SAM are trained on SA-1B [5]. SimpleClick and SAM are from official models and use specific data pre-processing pipeline.

Sampling GrabCut Berkeley SBD PascalPart
NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ IoU@1↑

Uniform 1.46 1.52 0.86 1.41 2.29 0.83 3.49 4.93 0.70 6.44 0.52
Inverse-prop. 1.34 1.46 0.89 1.37 2.21 0.84 3.44 4.89 0.72 6.38 0.53

Table B. Results of ablation study on proposal sampling.

LoRA GrabCut Berkeley SBD DAVIS PascalPart PartImageNet
Rank NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@85

4 1.36 1.48 1.43 2.25 3.48 4.93 4.62 5.84 6.47 6.03
8 1.34 1.46 1.37 2.21 3.44 4.89 4.44 5.72 6.38 6.01

16 1.32 1.44 1.40 2.23 3.45 4.90 4.68 5.85 6.39 6.03
32 1.32 1.44 1.37 2.24 3.40 4.85 4.41 5.70 6.42 6.03

Table C. Ablation study on LoRA. We train our GraCo on the same AGG-generated proposals with different ranks of the LoRA. We
utilize ViT-B as the backbone. Bold indicates the best performance and underlined the second best.

Granularity PascalPart PartImageNet
Definition NoC@85↓ IoU@1↑ NoC@85↓ IoU@1↑

Scale-only 6.43 0.52 6.08 0.54
Scale & Semantic 6.38 0.53 6.01 0.55

Table D. Results of ablation study on granularity definition.

• PartImageNet [4]. The dataset groups 158 classes from
ImageNet [10] into 11 super-categories and provides a to-
tal of 40 part categories, which is a large, high-quality
dataset for part segmentation, offering part-level anno-
tations on a broad range of classes, including non-rigid,
articulated objects. We use the validation set of PartIm-
ageNet to evaluate the performance of IS model at the
part-level, which includes 1206 images and 5626 parts.

• SA-1B [5]. The dataset consists of 11M high-
resolution (3300×4950 pixels on average), diverse, and
licensed images and 1.1B high-quality segmentation
masks. To alleviate storage pressure, released images are

downsampled and their shortest side is set to 1500 pixels.
We use the first 1000 images to evaluate the performance
of different methods.

4. Additional Qualitative Results
We supplement more examples to demonstrate the granular-
ity controllability and excellent segmentation performance
of our GraCo in multi-granularity scenarios, cf. Figure A.
For complex scenarios, our GraCo allows the user to select
the appropriate granularity to generate the required mask.
Furthermore, our GraCo facilitates precise control over the
expansion of segmentation masks through multiple positive
clicks by applying a small granularity. This advantage ef-
fectively overcomes the limitations of current object-level
IS methods (e.g., SimpleClick [6]) when dealing with tiny
or detached components. We also demonstrate the qual-
itative results of the proposed GraCo on four object-level
benchmarks with a fixed input granularity of 1.0, cf. Fig-
ure B. Our GraCo achieves impressive qualitative results.



Part GT GraCo (ours)SimpleClick

Ground-truth 1 click, IoU=0.33 2 clicks, IoU=0.50 3 clicks, IoU=0.58 4 clicks, IoU=0.82 0.4: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.18 2 clicks, IoU=0.39 3 clicks, IoU=0.51 4 clicks, IoU=0.91 0.5: 1 click, IoU=0.85

Ground-truth 1 click, IoU=0.04 2 clicks, IoU=0.04 3 clicks, IoU=0.08 4 clicks, IoU=0.63 0.2: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.18 2 clicks, IoU=0.41 3 clicks, IoU=0.57 4 clicks, IoU=0.73 0.2: 2 clicks, IoU=0.87

Ground-truth 1 click, IoU=0.19 2 clicks, IoU=0.21 3 clicks, IoU=0.31 4 clicks, IoU=0.78 0.4: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.06 3 clicks, IoU=0.14 5 clicks, IoU=0.22 8 clicks, IoU=0.72 0.1: 1 click, IoU=0.73

Ground-truth 1 click, IoU=0.08 2 clicks, IoU=0.23 3 clicks, IoU=0.49 4 clicks, IoU=0.70 0.3: 1 click, IoU=0.76

Ground-truth 1 click, IoU=0.05 2 clicks, IoU=0.27 4 clicks, IoU=0.54 5 clicks, IoU=0.79 0.4: 1 click, IoU=0.78

Figure A. More visualization examples of interactive segmentation on part GT using SimpleClick [6] and our GraCo. The proposed
method satisfies the user’s requirements with just one or two clicks.
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Figure B. Visualization on four object-level benchmarks. Note that the input granularity of GraCo is fixed to 1.0.
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