
Grounding and Enhancing Grid-based Models for Neural Fields

Supplementary Material

7. Proofs to theorems

One of our major contributions is to reveal the power of
NTK theories [3, 17, 46] to grid-based models. The main
paper introduces several claims based on our introduced
grid tangent kernel (GTK). We introduce proofs in this sec-
tion and provide discussions and interpretations of claims
in grid-based unbounded radiance fields.

7.1. Settings

We present our notations in the Table 6. Following previ-
ous works [38, 46], we build up the analysis framework for
grid-based models in a supervised regression setting. For
simplicity, we assume the model weights are initialized to
zero tensors:

w(0) = 0. (10)

We use a regression loss to measure a grid-based model
gw parameterized by w:

L(w) =
1

2

nX

i=1

(Y i � gw(Xi))
2 , (11)

and we assume 0  Y i  1, 0  gw  1. Model parame-
ters evolve following gradient descent (GD), where the r-th
weight wr can be written as:

wr(t+ 1)�wr(t) = �⌘l
@L(w(t))

@wr
. (12)

The vector form of this update rule is:

vec(w(t+ 1)) = vec(w(t))� ⌘lZ(t)(O(t)� Y i), (13)

where Z(t) is the gradient matrix at timestep t:

Z(t) = (
@g (Xi,w(t))

@w1
,
@g (Xi,w(t))

@w2
, ...,

@g (Xi,w(t))

@wr
)T .

(14)
The continuous form of model dynamics can be de-

scribed via gradient flow, which is an ODE [38]:

dw(t)

dt
= �rL(w(t))

= �
nX

i=1

(g (Xi,w(t))� Y i)
@g (Xi,w(t))

@w
.

(15)

7.2. Grid-based models and their derivatives

A grid model can be represented via a weighted average of
features on the grid nodes, as shown in its definition:

g(Xi,w) ,
X

i2U(Xi)

' (Xi,⇥i)wi. (16)

For ease of mathematical analysis, we generalize the sum-
mation to all parameters instead of the surrounding index
U(X). Such a procedure can be achieved by setting the
kernel ' to zero at non-local indexes:

g(Xi,w) =
mX

r=1

' (Xi,⇥r)wr. (17)

We further define the vector form of the nodal function as:

'(Xi) = ('(Xi,⇥1),'(Xi,⇥2), ...,'(Xi,⇥m))T .
(18)

Grid-based models require that the kernel function ' is only
determined by the node index and the input data, and the
kernel function is not changed during a concerned period of
time. This constraint holds for many state-of-the-art grid-
based models [18, 31, 54]. Although in some cases, such as
adaptive learning [9], the kernel function is optimized along
with the feature vectors, the assumption is still a reasonable
one by assuming that the kernel function is updated much
slower than the grid features w. Therefore, during a short
enough time span, the kernel function can be regarded as a
static one.

The summarization of the kernel function is one (due to
the normalization procedure Equation (8)):

mX

r=1

'(Xi,⇥r) = 1, 8Xi. (19)

7.3. Proof of Theorem 1

In Theorem 1 of our paper, we show that the training dy-
namics of grid-based models are associated with the GTK:

Proof. The model parameters evolve according to the fol-
lowing differential equation:

dg (Xi,w(t))

dt
=

dw(t)

dt
⇤ @g (Xi,w(t))

@w
. (20)

Considering Equation (15) and the definition of GTK, we
have:

dg (Xi,w(t))

dt
= �

nX

j=1

(g (Xj ,w(t))� Y j) [Gg(t)]i,j .

(21)
We can write it in a compact form, while considering the
fact that Y is not changed during training:

dO(t)

dt
= �Gg(t) · (O(t)� Y). (22)

InstantNGP NFFB NeuRBF Ours

NAE↓ : 4.95 NAE↓ : 4.31 NAE↓ : 3.24 NAE↓ : 3.05

NAE↓ : 7.45 NAE↓ : 6.25 NAE↓ : 5.34 NAE↓ : 5.02

GT

Figure 6. 3D signed distance field (SDF) reconstruction results comparing to InstantNGP [31], NFFB [54], NeuRBF [9]. We show the
reconstructed geometry of our approach at the leftmost column. We show the normal angular errors (NAE) in this figure.

Variable Definition

f a function

g a grid-based model

Xi an input data

Y i a label

n the size of the dataset

m the number of parameters in the model

d the dimension of the output feature

A a matrix

Aij the (i, j)-th entry of A

k · k2 the Euclidean norm of a vector

k · kF the Frobenius norm of a matrix

�min(A) the minimum eigenvalue of a symmetric matrix A

vec(A) the vectorization of a matrix A

I or In the identity matrix with shape n⇥ n

w(t) the weight matrix of shape r ⇥ d at timestep t

wr(t) the r-th weight of the model at timestep t

S = {(Xi,Y i)}ni=1 input-label samples

O(t) = gw(Xi) = g(Xi,w) a model with weights w and inputs Xi

Z(t) the gradient matrix at timestep t, see Equation (14)

Gg(t) the GTK matrix of a grid-based model g at timestep t

L the loss

⌘l the learning rate

� the Fourier feature mapping

' the nodal function

F a function class

" random variables from {�1, 1}
B an upper bound of weight change

B(w) defined in Equation (32b)

ko a coefficient used in Equation (35)

T defined in Equation (39)

Table 6. Definitions of notations in this paper.

The discrete version of Equation (22) with a learning rate ⌘l
can be written as:

O(t+ 1)�O(t) = ⌘lGg(t)(O(t)� Y). (23)

Discussions. Another equivalent definition of GTK given
the gradient matrix Z is:

Gg(t) = Z(t)TZ(t). (24)

This theorem shows that GTK connects the error term
O(t) � Y to the changing rate of the output. Therefore,
this theorem can be used to analyze the training behaviors
of grid-based models. We further show in Theorem 2 that
GTK keeps constant during training, and therefore, standard
kernel regression methods [38] can be applied to analyze
behaviors of grid-based models.

7.4. Proof of Theorem 2

Proof. According to the previous analysis, the kernel func-
tion ' remains constant during training. Therefore, accord-
ing to Equation (14) and Equation (17), the gradient matrix
can be written as:

Z(t) = '(Xi). (25)

Therefore, the gradient matrix remains constant during
training:

Z(t) = Z(0) = Z. (26)

According to Equation (24), we can conclude that the
GTK is not changed across training. Therefore, we have:

Gg(t) = Gg(0), (27)

Discussions. This theorem shows that the GTK is un-
changed during training for grid-based models. Therefore,
GTK is a powerful tool for understanding these grid-based
models’ training and generalization properties. We can call
these grid-based models as quasi-linear models because al-
though the model is not linear regarding the input data Xi,
the model is linear regarding the weights. Different from
NTK [17], which is constant only when the network width
is infinite, the property of GTK is not asymptotic, which
means that grid-based models might be better understood
than conventional neural networks (MLPs).

7.5. Proof of Theorem 3

Proof. The major technique uses the empirical Rademacher
complexity to bound the population loss according to the
following theorem from [3]. We first recap the definition of
population loss and empirical loss:

LD (t) = E(Xi,Y i)⇠D [L (f (Xi,w(t)) ,Y i)] , (28)

LS (t) =
1

n

nX

i=1

L (f (Xi,w(t)) ,Y i) . (29)

Then, we introduce a useful theorem from [3].

Theorem 4. (from Theorem B.1 of [3]) Given a set of n
samples S, the empirical Rademacher complexity of a func-

tion class F (mapping from Rd
to R) is defined as:

RS(F) =
1

n
E"2{±1}n

"
sup
f2F

nX

i=1

"if (Xi)

#
, (30)

where " contains i.i.d random variables drawn from a uni-

form Rademacher distribution in {�1, 1}. Given a bounded

loss function L(·, ·), which is 1-Lipschitz in the first argu-

ment. Then with probability at least 1 � �p over sample S
of size n:

sup
f2F

{LD(f)� LS(f)}  2RS(F) + 3c

r
log(2/�p)

2n
.

(31)

Given a bound B > 0 (we will calculate B in our case
later), we consider a bounded function of grid-based mod-
els:

Fw(0)
B = {gw : B(w)} , (32a)

B(w) , kw �w(0)kF  B. (32b)

We calculate the empirical Rademacher complexity as fol-
lows:

RS(Fw(0)
B) =

1

n
E"2{±1}n

2

4 sup
f2Fw(0)

B

nX

i=1

"ig (Xi)

3

5

=
1

n
E"2{±1}n

"
sup
B(w)

nX

i=1

"i

mX

r=1

'(Xi,⇥r)wr

#
,

(33)
where '(Xi,⇥i) is the kernel function, and here we lev-
earage Equation (17).

Considering Equation (26), we can write the above equa-
tion as:

RS(Fw(0)
B) =

1

n
E"2{±1}n

"
sup
B(w)

vec(w)TZ"

#

=
1

n
E"2{±1}n

"
sup
B(w)

vec(w)TZ(0)"

#

=
1

n
E"2{±1}n

"
sup
B(w)

vec(w �w(0))TZ(0)"

#

 1

n
E"2{±1}n [B · kZ(0)"k2]

 B

n

r
E

"⇠{±1}n
[kZ(0)"k22]

=
B

n
kZ(0)kF .

(34)
We first bound kZ(0)kF :

kZ(0)k2F =
mX

r=1

nX

i=1

'2(Xi,⇥r)

=
nX

i=1

mX

r=1

'2(Xi,⇥r)

 kon.

(35)

The design and weights of the kernel function affect the
constant ko. Since it is a common practice in NTK theo-
ries [3, 17] that we scale the output (and therefore the gra-
dient) of the network by a constant, we set ko = 1

2 to make
the resulting generalization bound consistent with that in the
NTK theory [3]. The exact value of ko does not affect the
conclusions of our analysis, and it’s safe to set ko = 1

2 . We
now have the following:

RS(Fw(0)
B)  1p

2n
B. (36)

Then we prove Equation (32b) holds and calculates the
upper bound B in the equation. We start from Equation (23)
and apply Equation (27):

O(k + 1)�O(k) = ⌘lGg(O(k)� Y). (37)

Recursively applying the above equation, we can derive the
following:

O(k)� Y = �(I � ⌘lGg)
k(O(0)� Y)

= �(I � ⌘lGg)
k
Y .

(38)

Here, we use the assumption that the model weights are all
set to zero stated in Equation (10), and we use the definition
of the model predictions in Equation (17). We introduce a
polynomial of Gg as:

T ,
k�1X

i=0

⌘l(I � ⌘lGg)
i (39)

Then we plug the above result including Equation (26)
into Equation (13):

kw(k)�w(0)kF =
q
k vec (w(k))� vec (w(0)) k22

=

vuut
�����

k�1X

i=0

⌘lZ(I � ⌘lGg)iY

�����

2

2

=
q
kZTY k22

=
p
Y

T
T

T
Z

T
ZTY

=
p
Y

T
TZ

T
ZTY

=
q
Y

T
TGgTY ,

(40)
where we use Equation (24) and we consider the fact that
T is a symmetric matrix. Decompose the matrix of Gg as
follows:

Gg =
nX

i=1

�iviv
>
i . (41)

Since T is a polynomial of Gg , its eigenvectors are the same
as Gg , and we have:

T =
nX

i=1

⌘l

k�1X

j=0

(1� ⌘l�i)
j
viv

>
i

=
nX

i=1

1� (1� ⌘l�i)
k

�i
viv

>
i .

(42)

Therefore, we have:

TGgT =
nX

i=1

1� (1� ⌘l�i)

k

�i

!2

�iviv
>
i

�
nX

i=1

1

�i
viv

>
i

= (Gg)
�1 .

(43)

Plug this into Equation (40), we have:

kw(k)�w(0)kF 
q
Y

>
G

�1
g Y . (44)

Here we have proved Equation (32b).
Set B = Y

>
G

�1
g Y and plug into Equation (36), we

have:

RS(Fw(0)
B) 

s
Y

>
G

�1
g Y

2n
. (45)

Then we are ready to apply Theorem 4:

LHS = sup
f2Fw(0)

B

{LD(f)� LS(f)}



s
2Y >

G
�1
g Y

n
+ 3

s
log(2

�p
)

2n

=

s
2Y >

G
�1
g Y

n
+O

0

@

s
log 2

�p

n

1

A .

(46)

Bound LS(f) as follows (considering Equation (11)):

LS(f) =
1

n

nX

i=1

[L (Oi(k),Y i)� L (Y i,Y i)]

 1

n

nX

i=1

|Oi(k)� Y i|

 1p
n
kO(k)� Y k2

=

r
2L(w(k))

n

 1p
n
,

(47)

where we use the fact that the loss L(w(k))  1
2 . There-

fore, we have proved Theorem 3.

Discussions. The key insight behind this proof procedure
is that the generalization gap is strongly associated with
weight change during training. Therefore, if we can nar-
row down the required weight change across training (e.g.,
adding more inductive bias or setting proper initialization),
we will have a model that generalizes better.

Another insight is that the generalization gap is associ-
ated with the dominating term � = Y

>
G

�1
g Y , which is

a quadratic form of G�1
g . We may use this knowledge to

motivate designs of future grid-based models better.
Also, labels Y will affect the generalization ability of

grid-based models. This could explain why pose initializa-
tion accuracy and point cloud initializations greatly matter
to radiance field reconstruction [18, 47, 59].

7.6. NeRF experimental details

In unbounded scenes, one must warp the scene into nor-
malized device coordinates (NDC [4, 29]) before feeding
the coordinates into neural networks. Following Mip-NeRF
360 [5] and DVGOv2 [44], we use a two-layer parameter-
ization to model near and far objects separately. Formally,
for a sampled point p in the ray r where its real-world co-
ordinate X

p
w is transferred to the normalized one:

X
p
n =

(
X

p
w, kXp

wk1  1,⇣
1 + b� b

kXp
wk1

⌘
Xp

w

kXp
wk1

, kXp
wk1 > 1,

(48)
where b is a hyperparameter of the background length. We
set b = 0.2 in all experiments.

The Fourier feature length l is set to five in all the ex-
periments. The size of the voxels in grid-based models for
NeRF experiments is set to 3203 (Nx = Ny = Nz = 320).
The post-activation bias is set to ⌘b = 1 ⇥ e�3. We use
⌘F = 0.5 to balance two losses. We use the Adam opti-
mizer [19] with a batch size of 8192 rays to optimize the
representation for 40k iterations. We use a constant learn-
ing rate ⌘l = 1 ⇥ e�3 without learning rate decay. Our
implementations are based on Pytorch. The speed test is
conducted on a single NVIDIA 3090Ti GPU card and av-
eraged numbers across three runs are reported to avoid ran-
dom noises. The other setup of the speed test follows previ-
ous works [9, 44]. More details are in the supplementary.

8. Additional NeRF dataset details

We produce additional NeRF dataset details on unbounded
datasets here. Tanks&Temples [20]. We show experimen-
tal results on four large-scale scenes provided by [20]. All
the scenes are hand-held 360-degree captures, and camera
poses are estimated by COLMAP [41]. We use the same
dataset split as DVGOv2 [44].

Mip-NeRF-360 [5]. A dataset of seven scenes was pub-
lished. Each scene contains a challenging central object in
the background with rich details. Camera poses are derived
via COLMAP [41]. Comparison experiments follow the
dataset split of previous work [5, 44].

San Francisco Mission Bay (SFMB) [47]. This is a
street scene dataset released by Block-NeRF [47]. The im-
ages are captured in San Francisco’s Mission Bay District.
Twelve cameras on a vehicle record images from different
angles. Collected images are divided into train and test
splits. We generate a virtual driving camera sequence, in-
cluding rotating and forwarding poses, in the render split.
We do not compare to the full version of Block-NeRF [47],
which is not open-sourced. However, we re-implement
their block division technique for baselines and ours: we
train separate models for different blocks, and renderings
are generated via the block composition [47]. The number,

sizes, and positions of blocks are the same for all compared
methods. Please refer to the supplementary for more details.
On SFMB [47], we use one block to measure the number of
parameters and the training time.

9. 3D SDF reconstruction visualizations

We provide visualizations of SDF estimation in Figure 6.
From this visualization, we can find that our results can re-
cover more fine-grained details compared to other methods.
Moreover, our results often produce more smooth surfaces
compared to other baselines.

	. Introduction
	. Related work
	. Methodology
	. Understanding grid-based models
	Formulations
	The grid tangent kernel (GTK) theory

	. MulFAGrid

	. Experimental results
	. Numerical study based on the GTK
	. 2D image fitting
	. 3D signed distance fields reconstruction
	. Novel view synthesis
	. Ablation studies

	. Conclusion
	. Acknowledgements
	. Proofs to theorems
	. Settings
	. Grid-based models and their derivatives
	. Proof of theorem-law
	. Proof of theorem-gtk-unchanged
	. Proof of theorem-gtk-generalization
	. NeRF experimental details

	. Additional NeRF dataset details
	. 3D SDF reconstruction visualizations

