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Supplementary Material

In this supplementary, we commence by providing a com-

prehensive exposition on the implementation details of our

method. Subsequently, we expound upon the calibration

of the multi-modal system and the processing of IMU ac-

celeration data during the data collection phase of IMHD2.

Finally, we present additional qualitative and quantitative

results to further validate the efficacy of I’m-HOI, with a

particular focus on the evaluation of each regularization term

integrated within the category-specific interaction diffusion

filter component.

A. Implementation Details

A.1. General Interaction Motion Inference

Network Architecture. We employ a pre-trained ResNet-

34 model [17] f enc : R
H×W×4 7→ R

8×8×512 to extract

image features, where H = W = 256. Subsequently, we

utilize 3 stacked deconvolution layers to construct a fea-

ture pyramid, with each layer f deconv
i : R

Hin×Win×Cin 7→
R

2Hin×2Win×Cout receiving input features with resolution

Hin = Win = 8, 16, 32 and channel Cin = 512, 256, 256
respectively, and producing a 256-channel feature map that

is upsampled by a fator of 2. Following each deconvolu-

tion layer are Batch Normalization and ReLu activation

layers. For every intermediate feature map, a specific re-

gressor f
reg
i : RHin×Win×256 7→ R

6+3 is tailored to embed

it to R
2000 and concatenates it with R̂

(i−1)
o , T̂

(i−1)
o to pre-

dict ∆R̂
(i)
o ,∆T̂

(i)
o . Each regressor comprises two hidden

Linear layers with a dimension of 1024, as well as two out-

put Linear layers that predict delta rotation and translation

independently. Dropout layers with a probability of 0.5 are

inserted between each pair of consecutive Linear layers.

Training. The proposed f enc, {f deconv
i }3i=1, {f

reg
i }3i=1 are

trained end-to-end with the inverse kinematics layer, super-

vised by L = Lkp3d + ¼j2dLj2d + Ltwist + ¼occ-silLocc-sil +
¼areaLarea. Particularly, the object-oriented mesh alignment

feedback loss Lmaf = ¼occ-silLocc-sil + ¼areaLarea is added

after 55 training epochs. The loss weights are: ¼j2d =
1× 10−9, ¼occ-sil = 1× 10−6, ¼area = 2× 10−7. The model

is trained for 190 epochs on 6 NVIDIA GeForce RTX 3090

GPUs. In each epoch, we randomly sample one from 8

images to train. The training batch size is set to 8.

Optimization. The optimization energy function defined

as E = wvisualEvisual +wimuEimu is configured with: wvisual =
20, wimu = 1×105. We set the learning rate during optimiza-

tion to 0.01 for 30-fps data (BEHAVE [4], InterCap [24] and

CHAIRS [26]) and 5 × 10−4 for 60-fps data (IMHD2 and

HODome [102]).

A.2. Categoryspecific Motion Diffusion Filter

Network Architecture. We employ 4 transformer encoder-

only layers, each equipped with 4 attention heads, to learn

category-specific human-object interaction manifold. The

model dimension Dmodel = 1024 and the key, value dimen-

sion Dkey = Dvalue = 512. We take N = 1000 steps and

sinusoidal positional encoding function during denoising

phase. In contrast to the methodology outlined in [44], where

the condition is exactly a part of the target motion, we lever-

age outcomes from the preceding stage alongside raw IMU

measurements as conditions to model the transition from the

predictive distribution to the authentic manifold.

Training. We initially warm up the diffusion model solely

on our complete training dataset using simple objective func-

tion for 100 epochs. Subsequently, we proceed to train the

model on category-specific data, incorporating specially de-

signed regularization terms Lconsist,Lvel and Limu to implic-

itly model distinct interaction patterns. The regularization

term weights are ¼off = ¼vel = ¼consist = 1, ¼imu = 100.

More detailed, we apply Loff and Lvel for 35 epochs before

adding Lconsist and Limu. To enhance the generation results,

we maintain an exponential moving average (EMA) version

of the model throughout training, updating it every 10 epochs

with a decay rate of 0.995. Additionally, we leverage Au-

tomatic Mixed Precision (AMP) to accelerate the training

procedure. The model is trained for 55 epochs on a single

NVIDIA GeForce RTX 3090 GPU, with the training batch

size set to 128.

B. Data Preparation Details

B.1. System Calibration of IMHD2

Temporal Synchronization. In order to synchronize RGB

data with IMU measurements, we instructed the performer to

wear an additional IMU sensor on the ankle area and execute

a takeoff motion at the onset of each interaction segment.

By detecting the point at which the performer falls to the

ground based on the gravitational acceleration mutation in

the IMU signals, we automatically pinpointed this moment

as the starting frame and manually annotated it within the

RGB sequences.

Spatial Alignment. To mitigate spatial misalignment be-

tween camera and IMU, we conducted spatial alignment

once per ten minutes. Specifically, in our multi-modal and

multi-sensor system, there exists multiple coordinate frames,

including {FCi
}31i=0 for cameras, FW for world and FI for

inertia. Since the transformation TW→Ci
∈ SO(3) from



Holdhandle Hit Lefthand Carry Ollie

Holdhead Hit Lefthand Push Kickflip

Lefthand Swing Lift Grind

Midpart Rotate Putdown Pickup Manual

Pickup Putdown Ride Play Heelflip

Righthand Swing Righthand Carry Pop Shove-it

Rub Righthand Push Nollie

Throw Catch Twohands Carry Varial Kickflip

Twoends Rotate suitcase Twohands Push McTwist

baseball bat Twohands Swing Twohands Pull skateboard Darkslide

Left Biceps Forward Swing Forehand

Left Lunges Backward Swing Backhand Hold

Left Triceps Snatch Volley Stir

Right Biceps Turkish Get-up Overhead Smash Shake

Right Lunges Goblet Squat Slice Flip

dumbbell Right Triceps kettlebell Windmill tennis racket Drop Shot pan

Drive Sit Sweep

Putt Lean Push

Chip Adjust Pull

Pitch Swivel Twist

Sand Shot Recline Store

Fade Rest Tap

Hook Clean Tilt

Draw Lift Lift

Grip chair Rock Grip

golf club Slice Kick broom Maintain

Table 5. IMHD2 collects 10 distinct objects along with a range of interaction motions associated with each object.

FW to FCi
is easy to obtain through off-the-shelf multi-

camera calibration toolbox, our goal is to calibrate the trans-

formation TI→W ∈ SO(3) from FI to FW .

In our implementation, we capture the global orientation

{RW
t ∈ SO(3)}T−1

t=0 of the performer who circles around

in FW by [1]. The inertial rotation measurement {RI
t ∈

SO(3)}T−1
t=0 in FI is simultaneously recorded by an IMU

sensor positioned at the waist area. Suppose the IMU sensor

is relatively fixed to the performer, we can construct the

following equation:

TI→WR
I
t (TI→WR

I
t+s)

−1 = R
W
t (RW

t+s)
−1, (14)

where s = 5 is the stride. Let Bt = RI
t (R

I
t+s)

−1 and

At = −RW
t (RW

t+s)
−1, we can reformulate Equation 14 as:

AtTI→W + TI→WBt = 0, (15)

which is a Sylvester equation. To solve this equation, both

analytical [56] and iterative optimization methods [34] can

be used.

B.2. Acceleration Data Processing

Normalization on Real Data. Given the assumption that

all objects are rigid and possess uniform rotational inertia,

Figure 8. Illustration

of why extra linear ac-

celeration occurs.

with their centroids equivalent to

their geometry centers, practical

constraints arise when attempting

to mount the IMU sensor precisely

onto these centers. which may lie

within the object. Consequently,

extraneous linear acceleration may

arise even from pure rotational

motion, introducing undesirable

noise. To eliminate such distur-

bances, we initially fix a mounting

point for each object and manually

measure the directional offset r⃗ from the center to that point

using mesh processing software [9]. By leveraging recorded

angular velocity w⃗, the additional linear velocity stemming

from rotation is v⃗ = w⃗× r⃗, and we can calculate the excess

linear acceleration: ¶at = vt−vt−∆t

∆t
. Finally, the normal-

ized acceleration data can be attained by subtracting ¶at

from the raw measurements.

Simulation on Synthetic Data. Furthermore, we simulate

synthetic IMU data based on ground-truth object motion

annotations of [4, 24, 26, 102]. In particular, to derive inertial



Figure 9. Attributes comparison between different datasets.

acceleration data, we follow [47, 67, 93] to calculate the

second-order difference of object translation:

at =
To,t−n + To,t+n − 2To,t

(nÄ)2
, (16)

where n = 4 is the smoothing factor to enhance the approx-

imation to actual acceleration, and Ä = 1
fps

represents the

time interval between consecutive frames.

B.3. Dataset Statistics

We present a comprehensive overview of the contents of

IMHD2 in Table 5. It reveals that, for each object, we cu-

rated a wide array of interaction patterns involving different

human body segments. Complementary to existing datasets

characterized by numerous participants, extensive record-

ing frames and super dense views, Figure 9 illustrates that

IMHD2 offers a more challenging, diverse and quality collec-

tion of motion data focusing on object-oriented interactions.

Specifically, measured through metrics such as average mo-

tion velocity and jitter, IMHD2 encompasses more dynamic

interaction motions with better smoothness. Moreover, IMU

data is concurrently collected alongside RGB images, serv-

ing not only to align with ground-truth annotations, but also

as network input to enhance accuracy and efficiency in mo-

tion capture.

C. More Experiments

C.1. More Results

In preceding sections, we have demonstrated the robustness

of I’m-HOI under severe occlusions. Expanding on this,

we now present sequential capture results of I’m-HOI to

showcase spatial-temporal coherence. Figure 10 illustrates

that our approach captures accurate and consistent human-

object spatial arrangements within a temporal context, which

CD (per-frame) CD (10s)

Regularization terms smpl object smpl object

w/o Loff 7.07 7.31 7.59 9.17

w/o Lvel 7.06 7.62 7.62 10.66

w/o Lconsist 6.29 6.98 6.30 9.01

w/o Limu 7.10 7.61 7.87 10.94

Ours 6.50 6.93 5.36 8.53

Table 6. Quantitative evaluations on regularization terms.

validates that our proposed network learns reasonable inter-

action distributions and recognizes continuous interaction

behaviors from input data featuring a hybrid modality.

C.2. More Comparisons

We also present additional qualitative comparisons of sequen-

tial capture results with baselines in Figure 11 and Figure 12.

It can be observed that even within an extremely short time

interval (approximately 0.07 seconds), the image-based base-

lines [85, 104] exhibit jittery object tracking results, focusing

on static interactions while disregarding temporal informa-

tion. Conversely, the video-based method [86] yields tem-

porally consistent but erroneous predictions without inertial

measurements, particularly evident in tracking object rota-

tional motions. In stark contrast, I’m-HOI makes use of both

visual cues and IMU signals, cooperating with the design

of object-oriented mesh alignment feedback and category-

specific interaction prior. This combination contributes sig-

nificantly to achieving consistent and correct results.

C.3. Ablation on Regularization Terms

To further evaluate the effectiveness of the regularization

terms in training of interaction diffusion filter, we conduct a

comparative analysis of the full model against downgraded

versions that exclude individual terms. As reported in Ta-

ble 6, the inclusion of Loff restricts objects to a more specific

and precise region. Lconsist enforces predicted joint rotations

to align with detected 3D joints after forward kinematics,

which prevents overfitting to pseudo ground-truth annota-

tions. Both Lvel and Limu contribute to improve performance

in the temporal domain. However, only applying Lvel may

lead to oversmooth results due to the loss of physical dynam-

ics. Incorporating second-order supervision Limu is verified

beneficial, not only for smooth results but also for capturing

physically plausible interaction motions.



Figure 10. Additional qualitative results of I’m-HOI on IMHD2. We present sequential RGB images, captured motion from camera view

and top-view visualizations.



Figure 11. Additional qualitative comparisons. I’m-HOI outperforms baselines on sequential data.



Figure 12. Additional qualitative comparisons. I’m-HOI outperforms baselines on sequential data.


