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Outline

This document supplements the main paper with additional
details of the benchmark dataset, more experimental results,
dataset documents, and visualizations. Below is the outline
of this document.
• Section 1. Additional details of the benchmark dataset,

including the capture procedure of raw videos and object
instances, and the annotation steps.

• Section 2. We conduct extensive studies and analyses on
the improved baseline approach, SAM+DINOv2.

• Section 3. Dataset documentation and intended uses.
• Section 4. Visualizations of 2D frames from raw video

sequences and 3D meshes of the capture environments.

1. Additional Dataset Details

We present additional details of the datasets, such as
collection details and annotations, to help others better un-
derstand and utilize the benchmark dataset. Note that the
data collection protocol was registered with the appropriate
institutional review board (IRB).

Raw video collections. We capture the raw data using
HoloLens2 that includes 1 RGB camera, 4 grayscale cam-
eras, and 1 depth sensor operating in 2 different modes,
shown in Figure 1. Considering the downstream application
scenarios of our benchmark task, we choose to capture our
benchmark dataset in 10 different indoor scenes. To capture
the real-time geometry information, we capture all videos
with high fps AHAT depth mode in HoloLens2 [7]. Note
that AHAT depth maps come with phase wrapping [6] at 1
meter but they can be unwrapped using rendered depth from
mesh or exploring existing unwrapping algorithms [3, 4].
Before capturing in a new environment, we have a warm-up
phase to make the device familiar with the surrounding en-
vironment in order to output accurate camera poses when
capturing the video. In the warm-up phase, we walk around
in the environment with the HoloLens2 turned on and make
sure the device has seen all visible surfaces. In practice, we
spend around 20 minutes for the warm-up phase when we

Figure 1. Illustration of our benchmark dataset. It is collected
with HoloLens2 which captures RGB, depth, and four grayscale
side views at 30 fps. Additionally, the device also captures per-
frame camera poses allowing coarse reconstruction of the surround-
ings.

move to a new environment and around 5 minutes every time
before we capture the new video.

Object instance collections. The entire videos come with
220 unique object instances, which cover a wide range of
object instances for naturalistic daily tasks, such as cooking,
writing, and repairing. For each instance, we take 25 high-
resolution images on a rotary table with the QR code (c.f.
Figure 2 for visual examples). Specifically, the photos are
taken by hand-held iPhone 13 Pro approximately 45 cm away
from the object center. As illustrated in Figure 3, we took 12
photos of each object evenly from 360◦ while keeping the
camera at about 30◦ elevation, 12 more at 60◦ elevation and
1 top-down view. We zoom in 2.5 times for objects whose
diameter is lower than 20 cm to ensure the object instance
is large enough in the image and use the normal scale (no
zoom) for the rest of the case.

Annotations. There are three types of manual annota-
tions along with our benchmark dataset. First, the 3D center
of each object instance. The annotator is first asked to draw
boxes on depth maps from ≥5 diverse views if possible.
Each 2D bounding box is lifted to the 3D space with camera
poses. The 3D centers of each object instance in a stationary
period are averaged to get the initial estimation. The annota-
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Figure 2. Visualization of raw and preprocessed multi-view images. Raw images represent the images directly output from the capture
device, i.e., iPhone 13 Pro. We process raw images with segmentation and cropping before feeding them into the models. For more
implementation details, please check Section 5 in the main paper.

Figure 3. Illustration of our multi-view capture setup. The left
panel shows our camera positions when taking 25 images to support
the pre-enrollment study. Specifically, we take 12 object-centric
photos evenly from 360◦ while keeping the camera 30◦ elevation.
Another 12 images are taken in a similar fashion while keeping
the camera 60◦ elevation. Lastly, we take one top-down view. An
example of the top-down view with the QR code is shown on the
right.

tors then examine the adjust the annotated 3D points based
on the RGB frames from the video sequence and captured
mesh. Second, the 2D axis-align bounding boxes of each
object instance every five frames starting from the begin-
ning of the video. Specifically, we ask the annotators to go
through the entire video first. We provide one video frame
with a 2D bounding box to specify each object instance to

the annotators. We ask annotators to draw amodal bounding
boxes of each object instance and do not annotate the object
instances with heavy occlusions (i.e., when less than 25%
of the object is visible). The last type of annotation is the
object motion state. The object is annotated as stationary
only when the hands are no longer in contact with the object.
All annotations are first labeled by a group of annotators
and checked by other independent annotators to ensure the
quality.

2. Additional Ablation study
This section supplements the results in the main paper

with the following 4 experiments. We analyze the perfor-
mance change w.r.t the number of views used in MVPE,
memory update mechanism, feature encoder, and proposal
generator of the improved baseline, i.e., SAM+DINOv2.
All experiments use online enrollment (SVOE) except the
number of views study.

Performance w.r.t number of views. Due to the archi-
tecture design of many transformer-based trackers, we only
use 5 views in the benchmark experiment. In this section, we
further study the relationship between the number of views
and the tracking performance. Specifically, we compare



Figure 4. Performance w.r.t number views in MVPE. We run
SAM+DINOv2 with different numbers of views while keeping
everything else the same for a fair comparison. We find the per-
formance saturates after using 5 views. This suggests that simply
encode and average features benefit from a higher number of views
(i.e., number of views from 1 to 5) but still cannot fully exploit the
visual information from different views (i.e., after using 5 views).

Figure 5. Performance improvement by updating on visible
only frames. We control the memory update of SAM+DINOv2
by updating the memory only when the object instance is visible.
We find the performance is significantly improved, indicating one
of the major challenges of the baseline is to correctly update the
memory with high quality predictions.

the performance of SAM+DINOv2 with 1, 2, 5, 10, 15, 25
images while keeping all other parameters the same. As
shown in Figure 4, the performance improves from 1 view
to 5 views but quickly saturates after using 5 views. This
suggests that naively encode and average features benefit
from a higher number of views but still cannot fully exploit
the visual information from different views.

Performance improvement with visible update only.
From the results shown in Table 2 and Table 3 in the main pa-
per, we find identifying high quality predictions and updating
the memory is the main challenge in the proposed baseline
pipeline. To further validate this idea, we control the update
of memory in SAM+DINOv2 model by only updating on
the visible frames. We extract the visible information from
the 2D annotations. In other words, the memory for each
instance is only updated on the frame where the 2D bound-
ing box is annotated. As shown in Figure 5, updating the
memory only when object instances are visible significantly
improves the performance. Although the update timing is
correct, errors from 2D predictions, depth maps and camera
poses prevent the model from improving further.

Performance w.r.t different feature encoders. The top-
performing baseline, i.e., SAM+DINOv2 adopts DINOv2
as the pretrained feature encoder. To further explore the

Table 1. Quantitative comparisons of different proposal gen-
erators. We compare the performance of SAM+DINOv2 and
YOLOv7+DINOv2. To keep the comparison fair, the only differ-
ences between these models are the proposal generators. From the
results, we find adopting YOLOv7 makes the performance slightly
worse. The proposal quality from YOLOv7 is lower but runs faster.

Proposals Precision(%)↑ Recall(%)↑ L2↓
0.25 0.75 1.5 0.25 0.75 1.5 (m)

YOLOv7 20.3 28.1 50.2 21.5 30.7 53.9 1.72
SAM 23.3 33.1 59.4 24.9 35.3 63.4 1.35

performance w.r.t different large-scale feature encoders, we
experiment with another state-of-the-art feature encoder, i.e.,
DINO [2]. We plot the results using DINO and DINOv2
at different cosine thresholds in Figure 6. From the results,
we find: (1) Stronger encoder improves the performance.
The best performance of SAM+DINOv2 is stronger than
SAM+DINO where both models have the peak performance
when the cosine threshold equals 0.6. (2) Similar perfor-
mance trend w.r.t cosine similarity changes. The perfor-
mance of both models first improves and then gradually
decreases when increasing the cosine threshold from 0.3 to
0.8.

Comparisons of different proposal generators. Cur-
rently, the improved baseline utilizes SAM as the proposal
generator. In this part, we replace SAM with the proposals
from YOLOv7, i.e., the output before the final classifica-
tion layer. The results are shown in Table 1. Although the
performance of YOLOv7+DINOv2 is lower compared to
SAM+DINOv2, which is not surprising. The proposal qual-
ity from YOLOv7 is lower but runs faster. However, the
current baseline approaches are not able to run in real time
due to the following encoding and lifting steps. One promis-
ing direction for future work is to improve the speed of the
tracking models.

3. Datasheet
We follow the datasheet proposed in [5] for documenting

our benchmark dataset.

Motivation

For what purpose was the dataset created?
This dataset was created to study the problem of instance
tracking in 3D from egocentric videos. We find current
egocentric sensor data from AR/VR devices cannot support
the study of our benchmark problem.

Composition

What do the instances that comprise the dataset represent?



Figure 6. Performance comparisons of different encoders at various cosine thresholds. From the results, we find: (1) Stronger
encoder improve the performance. The best performance of SAM+DINOv2 is stronger than SAM+DINO where both models have the peak
performance when the cosine threshold equals 0.6. (2) Similar performance trend w.r.t cosine similarity changes. The performance of both
models first improves and then gradually decreases when increasing the cosine threshold from 0.3 to 0.8.

Raw egocentric video sequences, object enrollments for each
object instance, and annotation files.
How many instances are there in total?
There are 50 video sequences with an average length of over
10K frames, 220 unique object instances with two types of
enrollment information, and three types of annotations.
Does the dataset contain all possible instances or is it a
sample (not necessarily random) of instances from a larger
set?
Yes.
What data does each instance consist of?
Please check Section 3.2 in the main paper for details.
Is there a label or target associated with each instance?
Yes. Please check Section 3.2 in the main paper for details.
Is any information missing from individual instances?
No.
Are relationships between individual instances made ex-
plicit?
Videos captured in the same scene share a similar surround-
ing environment but different activities. Object instances
are related to the task performed in the video. No explicit
relationships between different object instances in the same
video.
Are there recommended data splits?
Yes. The entire benchmark dataset focuses on evaluation
only. Models should be pretrained on other data sources.
Please check Section 3.1 in the main paper for details.
Are there any errors, sources of noise, or redundancies in the
dataset?
Yes. There are noises in camera poses and depth maps. The
source of camera pose noise is from the camera localization
from HoloLens2, especially under large head motion. The
depth map noises are from phase wrapping. But this noise
can be easily recovered with rendered depth using mesh or
exploring existing unwrapping algorithms.
Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets, other
datasets)?
Yes. The dataset is self-contained.
Does the dataset contain data that might be considered confi-

dential (e.g., data that is protected by legal privilege or by
doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)?
No.
Does the dataset contain data that, if viewed directly, might
be offensive, insulting, threatening, or might otherwise cause
anxiety?
No.
Does the dataset identify any subpopulations (e.g., by age,
gender)?
No.
Is it possible to identify individuals (i.e., one or more natural
persons), either directly or indirectly (i.e., in combination
with other data) from the dataset?
No. We have carefully examined the data and ensure no
personally identifiable information is included.
Does the dataset contain data that might be considered sensi-
tive in any way (e.g., data that reveals racial or ethnic origins,
sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identifica-
tion, such as social security numbers; criminal history)?
No..
Any other comments?
N/A

Collection Process

How was the data associated with each instance acquired?
The raw video sequences are collected with HoloLens2. The
pre-enrollment information is captured with the iPhone 13
Pro. The rest data, i.e, annotations and online enrollment
information, are acquired from human annotators.
What mechanisms or procedures were used to collect the data
(e.g., hardware apparatus or sensor, manual human curation,
software program, software API)?
The dataset is collected with open-source hl2ss [1] using
HoloLens2. The pre-enrollment images are captured with
the iPhone 13 Pro. For more details please check Section 3.1



in the paper.
If the dataset is a sample from a larger set, what was the sam-
pling strategy (e.g., deterministic, probabilistic with specific
sampling probabilities)?
N/A
Does the dataset relate to people?
Yes. The dataset includes video sequences of the first-person
view of individuals performing the daily activity.
Were any ethical review processes conducted (e.g., by an
institutional review board)?
Yes. Data collection protocol was registered with the appro-
priate institutional review board (IRB).
Did you collect the data from the individuals in question
directly, or obtain it via third parties or other sources (e.g.,
websites)?
The raw video sequences are collected when the camera
wearer performs the daily task.
Were the individuals in question notified about the data col-
lection?
Yes.
Did the individuals in question consent to the collection and
use of their data?
Yes.
If consent was obtained, were the consenting individuals
provided with a mechanism to revoke their consent in the
future or for certain uses?
No.
Has an analysis of the potential impact of the dataset and its
use on data subjects (e.g., a data protection impact analysis)
been conducted?
No. All annotations are on objective world states with no
subjective opinions or arguments involved.
Any other comments?
N/A

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done
(e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values)?
No.
Was the "raw" data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unanticipated
future uses)?
Yes. We will provide both the raw data and annotations.
Is the software used to preprocess/clean/label the instances
available?
No.
Any other comments?
N/A

Uses

Has the dataset been used for any tasks already?
No.
What (other) tasks could the dataset be used for?
Our benchmark dataset also supports the study of other 3D
scene understanding problems from egocentric videos, such
as SLAM, depth estimation, and camera localization.
Is there anything about the composition of the dataset or the
way it was collected and preprocessed/cleaned/labeled that
might impact future uses?
No.
Are there tasks for which the dataset should not be used?
The usage of this dataset should be limited to the scope of
instance tracking in 3D and geometric scene understanding
from egocentric videos.
Any other comments?
N/A

Distribution

Will the dataset be distributed to third parties outside of the
entity (e.g., company, institution, organization) on behalf of
which the dataset was created?
Yes. The dataset will be made publicly available and third
parties are allowed to distribute the dataset.
How will the dataset will be distributed (e.g., tarball on
website, API, GitHub)?
The dataset will be publicly available on both Github repo
and the website and stored on the cloud store, e.g., Google
drive or Amazon S3.
When will the dataset be distributed?
The full dataset will be released to the public upon accep-
tance of this paper.
Will the dataset be distributed under a copyright or other
intellectual property (IP) license, and/or under applicable
terms of use (ToU)?
We release our benchmark dataset and code under MIT li-
cense.
Have any third parties imposed IP-based or other restrictions
on the data associated with the instances?
No.
Do any export controls or other regulatory restrictions apply
to the dataset or to individual instances?
No.
Any other comments?
N/A

Maintenance

Is there an erratum?



No. When errors are confirmed, we will announce erratum
on the platform where dataset is publicly hosted, i.e., either
the Github repo or the website.
Will the dataset be updated (e.g., to correct labeling errors,
add new instances, delete instances’)?
Yes. We hope to bring more diversity to the dataset, such as
more object instance and scenes.
If the dataset relates to people, are there applicable limits on
the retention of the data associated with the instances (e.g.,
were individuals in question told that their data would be
retained for a fixed period of time and then deleted)?
No.
Will older versions of the dataset continue to be sup-
ported/hosted/maintained?
Yes. All versions of the dataset will be publicly available.
If others want to extend/augment/build on/contribute to the
dataset, is there a mechanism for them to do so?
Please email us if you are interested in extending or con-
tributing to the dataset.
Any other comments?
N/A

4. Additional Visualizations
We include additional 2D and 3D visualizations of our

benchmark dataset in Figure 7.
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Figure 7. 2D visualizations of frames from raw video sequences (upper panel) and 3D visualizations of the capture environments
(lower panel). The benchmark videos record camera wearers perform naturalistic tasks in real-world scenarios, such as cooking and
repairing. Please refer to Figure 1 for the layout of each sensor on the HoloLens2.
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