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A1. Experiments Details
A1.1. Dataset

We conduct the experiments on three popular long-tailed
benchmarks, including ImageNet-LT [5], Places-LT [5],
and iNaturalist 2018 [3]. We present these datasets in de-
tail below.
ImageNet-LT. The ImageNet-LT [5] is the long-tailed ver-
sion of the dataset ImageNet-2012 [1]. Overall, ImageNet-
LT has 115.8K images from 1000 categories with an imbal-
anced factor β = 1280/5.
Places-LT is a long-tailed version of the large-scale scene
classification dataset Places [13]. It consists of 62.5K im-
ages from 365 categories with class cardinality ranging
from 5 to 4,980.
iNaturalist 2018. The iNaturalist 2018 [3] is a large-scale
dataset for long-tailed visual recognition rooted in real-
world scenarios and exhibits a highly imbalanced distribu-
tion. It encompasses 437.5K training images and 24.4K val-
idation images spread across 8142 categories. The dataset’s
fine-grained nature further intensifies its complexity.

A1.2. More Results on ImageNet-LT and Place-LT

As shown in Tab. A1 and Tab. A2, we present additional
experimental results of our proposed LTGC on ImageNet-
LT and Place-LT datasets, including results on the ‘Many’
and ‘Medium’ split sets.

Table A1. Comparison with SOTA methods on ImageNet-LT.

Method Many Medium Few All
CLIP Zero [9] 60.8 59.3 58.6 59.8

CLIP Finetune [9] 74.4 56.9 34.5 60.5
VL-LTR [9] 77.8 67.0 50.8 70.1
LTGC(Ours) 83.0 79.8 70.5 80.6

Table A2. Comparison with SOTA methods on Places-LT.

Method Many Medium Few All
CLIP Zero [9] 37.5 37.5 40.1 38.0

CLIP Finetune [9] 50.8 38.6 22.7 39.7
VL-LTR [9] 54.2 48.5 42.0 50.1

RAC [6] 48.7 48.3 41.8 47.2
LPT [2] 49.3 52.3 46.9 50.1

LTGC(Ours) 55.8 54.2 52.1 54.1

A1.3. Prompts for LMMs comparison.

For the experiments on LMMs (Sec. ??), it’s worth
noting that providing a labels list significantly improves
the model’s performance compared to querying without a

list (i.e., directly asking ’What species is in the image?’).
The labels list provides prior information to the model,
helping it narrow down the decision space within its
extensive knowledge base. Therefore, on ImageNet-LT,
we used the query template ‘Please classify
this image. Choose from the following
classes: Class 1, Class 2, ..., Class
Y.’.

However, it is essential to note that the iNaturalist 2018
dataset encompasses a substantial number of classes, total-
ing 8,141, which is approximately 184 KB of text. Cur-
rently, no LLMs (including the most advanced GPT-4) are
capable of processing such a lengthy input. Inputting all
categories at once would lead to an error due to the limi-
tations in text length. Dividing the categories into multiple
inputs would cause the model to forget previous categories,
leading to inaccurate judgments based on the most recent
inputs. Therefore, for the iNaturalist dataset, we adopted
the query template ‘What species is in the im-
age?’ for testing purposes. We then reviewed the entire
response, considering the LLMs’ classification as correct
if it included any vocabulary matching the Ground Truth
class, and as incorrect otherwise.

Table A3. Effectiveness of the Self-reflection module. NC:
Number-checking. RC: Repetition-checking.

Dataset NC RC Top-1 Accuracy

ImageNet-LT

- - 60.5
✓ - 71.7
- ✓ 73.2
✓ ✓ 80.6

iNaturalist 2018

- - 71.6
✓ - 78.4
- ✓ 71.8
✓ ✓ 82.5

A2. Additional Ablation Studies
Here, we conduct additional ablation experiments. Unless
otherwise noted, we report the top-1 accuracy averaged over
three runs on the ImageNet-LT evaluation protocol.

Effectiveness of the iterative evaluation module. To
guarantee the accurate representation of the desired classes
by the images produced via T2I, we have integrated an iter-
ative evaluation module within our architecture for the pro-
gressive refinement of images. To assess the effectiveness
of this module, we contrasted it with three distinct image
generation strategies: 1) w/o iterative evaluation: the im-



ages are fed directly into our framework’s training process
without any preliminary detection or refinement. 2) De-
tection and exclusion: the CLIP model evaluates the gen-
erated images, selectively forwarding only the ones that
align closely with the intended class criteria to the train-
ing phase. Images that fail to meet the detection threshold
are excluded, bypassing the refinement step entirely. As il-
lustrate in Tab. A4, the performance of the two variants is
worse than our method. This suggests that our proposed
iterative evaluation module incorporating filtering and re-
finement of the design is more effective.

Table A4. Evaluation on the effectiveness of the iterative evalua-
tion.

Method ImageNet-LT iNaturalist 2018
w/o iterative evaluation 55.8 64.9
Detection and exclusion 71.5 77.4

Ours 80.6 82.5

Effectiveness of the Self-reflection module. The self-
reflection module consists of two elements: a number check
for images and a repetition check. We separately investi-
gated these two checks, and the results are shown in Tab.
A3. When only performing the quality check, LLMs gen-
erate highly repetitive descriptions, leading to a decrease in
textual diversity and, consequently, a decline in image di-
versity. When only performing the repetitiveness check, the
LLMs are posed the two questions mentioned in Section ??
only once. This results in a limited number of generated
samples, thereby leading to limited performance gains. As
shown in Tab. A3, our proposed method incorporates both
checks and consistently outperforms all variants. This at-
tests to (1) the effectiveness of the repetitiveness design, en-
abling LLMs to generate comprehensive text descriptions,
and (2) the efficacy of the self-reflection design, allowing
LLMs to increase the number of samples and simulate a
more balanced set of classes.

Impact of using different versions of ChatGPT of
LLM. Besides, we also test using different versions of
ChatGPT with different capabilities, including GPT 3.0,
GPT-3.5 Turbo 16K, and the latest GPT-4 Turbo 128K. As
shown in Tab. A5, our framework with different versions of
GPT used can achieve different results. This shows that the
performance of our framework is affected by the version of
ChatGPT.

Table A5. Evaluation on using different versions of ChatGPT.

Version ImageNet-LT iNaturalist
GPT 3.0 72.0 74.1
GPT 3.5 76.9 79.3
GPT 4.0 80.6 82.5

The effectiveness of different maximum image num-

bers for LLM’s self-reflection module. In our framework,
the maximum number of generated and original images for
each class y, denoted as Ky . For LLM’s self-reflection
module, the Ky is set to 100 for iNaturalist 2018, 300 for
ImageNet-LT, and 800 for Place-LT, respectively. We ex-
plore alternative caps for the maximum image number and
show the findings in Fig. A1. The results indicate that for
each dataset when the cap is set below 100, 300, and 800,
respectively, there’s a noticeable improvement in our frame-
work’s performance as the limit on generative images in-
creases. This might be because, by setting the maximum
number of images to be a larger number, LLM can bet-
ter cover the diverse distinctive features and backgrounds
(scenes). Moreover, it’s observed that increasing the maxi-
mum image number beyond 100, 300, and 800 does not lead
to further improvements in performance. However, surpass-
ing these maximum numbers of 100, 300, and 800 doesn’t
yield further performance gains. Therefore, balancing per-
formance and efficiency, we determined these respective
limits as the optimal settings for our framework.

Figure A1. The effectiveness of different maximum image
numbers for LLM’s self-reflection module.

Impact of the maximum number of cycle times for
iterative evaluation module. In our framework’s itera-
tive evaluation module, we initially cap the cycle count at
three. To explore the impact of varying this limit, we ex-
perimented with different maximum cycle thresholds and
presented the outcomes in Table A6. The results indicate an
enhancement in our framework’s performance as we expand
the maximum cycle count for iterative evaluation. This im-
provement is likely due to the more thorough refinement
of generated images achieved with a higher cycle limit.
However, the gains in performance diminish when the cy-
cle count exceeds three, leading us to establish three as the
optimal maximum for the iterative evaluation module.

Check the reasonability of the generated descrip-
tions. In our framework, we use ChatGPT to generate text
descriptions for the evaluated classes, and we further design



Table A6. Evaluation on the maximum number of cycle times for
iterative evaluation.

Maximum number of cycle time ImageNet-LT
1 71.5
2 78.1
3 80.6
4 79.9

a iterative evaluation module in which we guide ChatGPT
to modify its generated descriptions. Here, we perform a
check w.r.t. the reasonability of the generated descriptions
before and after passing into the iterative evaluation mod-
ule. Specifically, we find that, before passing into the it-
erative evaluation module, 4% of descriptions are checked
to be unreasonable, but 0.2% of the descriptions output by
the module is checked to be unreasonable. This shows that
ChatGPT has small probability of generating unreasonable
descriptions, while our iterative evaluation module can fur-
ther mitigate this problem. The above check is done by
inviting 3 volunteers and passing the same 1000 descrip-
tions to them. The 3 volunteers first make decisions inde-
pendently and then discuss disagreed decisions.

Preparation time. In our framework, before entering
the fine-tuning process, we first prepare the generated im-
ages by extending the descriptions of tail classes and then
generate diverse images for each class, filtering and regener-
ating the low-quality images. We here report the preparation
time of our framework. For generating images, the speed
of image generation is limited by DALL-E’s API, about 50
images/minute [8]. For generating descriptions, the speed
is about 300 items/minute. Note that the entire preparation
process of our framework can be automated by a script with
multi-threaded accelerated generation.

The effectiveness of fine-tuning with LoRA. In the
fine-tuning process, we fine-tune the visual encoder of
the CLIP model using Low-Rank Adaptation (LoRA) [4],
LoRA layers are typically added to the Transformer layers
of the CLIP model. The main idea of LoRA is to make low-
rank modifications to existing weight matrices, rather than
updating all parameters directly. This method is often used
in large-scale models to achieve effective and parameter-
efficient fine-tuning.

Each Transformer layer in the CLIP model consists of
two main components: the Multi-Head Self-Attention and
the Feedforward Neural Network. LoRA can be applied to
the weight matrices of both these components.

Specifically, in the Multi-Head Self-Attention, LoRA
can be applied to the Query, Key, and Value matrices. For
the Feedforward Network, LoRA can be integrated into the
first linear transformation, which is right before the ReLU
activation function.

Moreover, other competitive methods of parameter fine-

tuning have emerged in recent years, such as VQT [11]. In
Tab. A7 we compare LoRA with other fine-tuning methods
such as Linear-probing [7] and VQT [11]. We observe that
LoRA outperforms other fine-tuning methods, demonstrat-
ing the effectiveness of our fine-tuning with LoRA

Table A7. The effectiveness of fine-tuning with LoRA.

Method ImageNet-LT iNaturalist
Linear-probing [7] 71.4 66.3

VQT [11] 77.3 78.1
LoRA (Ours) 80.6 82.5

A3. Additional Visualizations

Visualisation of the iterative evaluation module. In this
work, we propose an iterative evaluation module for our
framework. This module aims to enhance the quality of
generated images, particularly those that are not highly ac-
curate. Fig A2 illustrates the refinement process carried out
by our iterative evaluation module. As depicted, this mod-
ule effectively improves images that initially do not align
well with their intended classes, ensuring they more accu-
rately represent these classes. This highlights the efficiency
and utility of our iterative evaluation module in image re-
finement.

Domain gap between generated images and original
images. Some previous methods have shown that there is a
domain gap [10] between the generated data and the original
data, to better illustrate the domain gap we visualize the t-
SNE [12] results for the part of the original data and the
part of generated data. In Fig. A3, we observe that there is
a domain gap between the generated data and the original
data. This motivated us to propose the BalanceMix method
and significantly helped the model fine-tuning to improve
the recognition results.

A4. Licenses
Large model licenses. We use ChatGPT and DALL-E by
following the terms of using the services of OpenAI. We use
CLIP by following the MIT License.
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