MS-DETR: Efficient DETR Training with Mixed Supervision

Chuyang Zhao¹², Yifan Sun¹, Wenhao Wang³, Qiang Chen¹, Errui Ding¹, Yi Yang⁴, Jingdong Wang^{1*} ¹ Baidu VIS ² Beihang University ³ University of Technology Sydney ⁴ Zhejiang University {zhaochuyang, sunyifan01, chenqiang13}@baidu.com wangwenhao0716@gmail.com, yangyics@zju.edu.cn {dingerrui, wangjingdong}@baidu.com

A. Experiments about the quality of candidates

We present a comparative analysis of candidate quality between our MS-DETR and the baseline model. We use Deformable DETR++ [1, 4] with 900 queries as our baseline and build our MS-DETR by applying mixed supervision to it. We compare the quality of candidates in terms of two metrics: the mean Intersection over Union (IoU) score and the count of candidates.

Figure 1. Comparison of IoU scores of top-k candidates. The x-axis corresponds to the value of k, and the y-axis corresponds to the averaged IoU scores of the top-k candidates of the COCO-2017 val set. One can see that the IoU scores of candidates in our MS-DETR surpass the baseline, which indicates the quality of the candidates is better with our approach.

We visualize the mean IoU score of top-k candidates in Figure 1. For each ground-truth object, we select queries with top-k IoU scores as its candidates. The mean IoU score is averaged over all ground-truth objects in the COCO-2017 [2] val set. We can see that with our mixed supervision, the mean IoU of top candidates surpasses the baseline by a large margin, indicating our MS-DETR generates better candidates.

In Figure 2, we visualize the count of high-quality candi-

Figure 2. Comparison of candidate numbers. The x-axis corresponds to the value of IoU, and the y-axis corresponds to the number of candidates with IoU exceeding the specified threshold. The number of candidates is averaged across all ground-truth objects in the COCO-2017 val set. One can see that the number of high-quality candidates in our MS-DETR surpasses the baseline by a large margin.

dates generated by the baseline and our MS-DETR, across varying IoU thresholds. High-quality candidates are queries with an IoU exceeding a specific threshold. One can see that with mixed supervision, our MS-DETR generates more high-quality candidates than the baseline.

B. Implementation details

We provide the implementation details of architecture (c) in Figure 2, which performs best among all MS-DETR variants.

The DETR decoder consists of multiple decoder layers. For clarity, we take one decoder layer for illustration. The input queries \mathbf{Q} for each decoder layer first go through cross-attention layer to collect information from image features \mathbf{I} , resulting in the features after cross-attention:

$$\mathbf{Q}_{ca} = CrossAttn(\mathbf{Q}, \mathbf{I}),$$
 (1)

The features after cross-attention layer are then fed into the self-attention layer, followed by a feed-forward network

^{*}Corresponding author.

(FFN) to extract the features for one-to-one prediction:

$$\mathbf{Q}_{\mathrm{sa}} = \mathrm{SelfAttn}(\mathbf{Q}_{\mathrm{ca}}), \quad \mathbf{Q}_{11} = \mathrm{FFN}(\mathbf{Q}_{\mathrm{sa}}), \quad (2)$$

The features after cross-attention layer are fed into an additional feed-forward network, yielding the features for one-to-many predictions:

$$\mathbf{Q}_{1\mathrm{m}} = \mathrm{FFN}(\mathbf{Q}_{\mathrm{ca}}), \tag{3}$$

Both one-to-one and one-to-many predictions are derived using shared box and class predictors:

$$\begin{split} \mathbf{B}_{1\mathrm{m}} &= \mathrm{box}(\mathbf{Q}_{1\mathrm{m}}), \quad \mathbf{S}_{1\mathrm{m}} &= \mathrm{cls}(\mathbf{Q}_{1\mathrm{m}}) \\ \mathbf{B}_{11} &= \mathrm{box}(\mathbf{Q}_{11}), \quad \mathbf{S}_{11} &= \mathrm{cls}(\mathbf{Q}_{1\mathrm{m}}), \end{split} \tag{4}$$

C. Details of one-to-many matching

We provide more details of our one-to-many matching introduced in Section 3.2. The algorithm establishes correspondences between the prediction sets $\{\mathbf{y}_i\}_{i=1}^N$ and the ground-truth object sets $\{\bar{\mathbf{y}}_i\}_{i=1}^M$, where N is the number of predictions, M is the number of ground-truth objects. Each element y in the prediction set consists of classification scores s and box prediction b. Similarly, each element $\bar{\mathbf{y}}$ in the ground-truth object set consists of a ground-truth category \bar{c} and bounding box $\bar{\mathbf{b}}$.

Following [3], we assign multiple predictions to one ground-truth object according to three criteria. We first compute the matching score between one prediction and ground-truth pair:

$$\texttt{MatchScore}(\mathbf{s}, \mathbf{b}, \bar{c}, \bar{\mathbf{b}}) = \alpha \cdot s_{\bar{c}} + (1 - \alpha) \cdot \texttt{IoU}(\mathbf{b}, \bar{\mathbf{b}}).$$

We assign each prediction to the ground-truth object with the highest matching score to it. Then, we filter out lowquality queries with matching scores lower than the given threshold τ . Finally, for each ground-truth object, we select top-k predictions with highest matching scores as the matched results for this ground-truth object.

Optionally, we can merge the one-to-one matching set with our previously computed matching set as the final oneto-many matching set. This is because one-to-one matching results are derived using Hungarian matching, which may not align with our computed one-to-many matching results. For each matching item $(\mathbf{y}_{\sigma(i)}, \mathbf{y}_i)$ in the one-to-one matching set, if it does not exist in the one-to-many matching set, we add it to the one-to-many matching set. We empirically find this operation brings slightly (0.1 ~ 0.2 mAP) improvement. The detailed procedure is illustrated in Algorithm 1.

References

 Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and Han Hu. Detrs with hybrid matching. *arXiv preprint arXiv:2207.13080*, 2022. Algorithm 1 One-to-Many Matching Algorithm

```
1: Input: prediction set \{\mathbf{y}_i\}_{i=1}^N, ground-truth set
     \{\bar{\mathbf{y}}_i\}_{i=1}^M, threshold \tau, top-k value k, score weight \alpha,
     one-to-one matching set L_{11} = \{(\mathbf{y}_{\sigma(i)}, \bar{\mathbf{y}}_i)\}_{i=1}^N
 2: Output: one-to-many matching set L_{1m}
 3:
 4: function MATCHSCORE(s, b, \bar{c}, \bar{b})
           return \alpha \cdot s_{\bar{c}} + (1 - \alpha) \cdot \text{IoU}(\mathbf{b}, \bar{\mathbf{b}})
 5:
 6:
     end function
 7:
 8: Initialize L_{1m} as an empty set
 9: for each ground-truth object \bar{\mathbf{y}}_i = (\bar{c}_i, \bar{\mathbf{b}}_i) do
           Initialize an empty list L_i for top-k matches
10:
           for each prediction \mathbf{y}_i = (\mathbf{s}_i, \mathbf{b}_i) do
11:
                 score \leftarrow MATCHSCORE(\mathbf{s}_i, \mathbf{b}_i, \bar{c}_i, \mathbf{b}_i)
12:
                if score > \tau then
13:
                      Add (\mathbf{s}_i, \mathbf{b}_i, score) to L_i
14:
                end if
15:
16:
           end for
           Sort L_i by score in descending order
17:
18:
           Keep the top-k elements of L_i
           Add elements from L_j to L_{1m}
19:
20: end for
21:
22: for each pair (\mathbf{y}_{\sigma(i)}, \mathbf{y}_i) in L_{11} do
           if \mathbf{y}_i \neq \emptyset and (\mathbf{y}_{\sigma(i)}, \mathbf{y}_i) \notin L_{1\mathrm{m}} then
23:
                Append (\mathbf{y}_{\sigma(i)}, \mathbf{y}_i) to L_{1m}
24:
25:
           end if
26: end for
27:
28: return L_{1m}
```

- [2] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2015. 1
- [3] Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and Philipp Krähenbühl. Nms strikes back. arXiv preprint arXiv:2212.06137, 2022. 2
- [4] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020. 1