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A. Experiments about the quality of candidates

We present a comparative analysis of candidate quality be-
tween our MS-DETR and the baseline model. We use De-
formable DETR++ [1, 4] with 900 queries as our baseline
and build our MS-DETR by applying mixed supervision to
it. We compare the quality of candidates in terms of two
metrics: the mean Intersection over Union (IoU) score and
the count of candidates.
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Figure 1. Comparison of IoU scores of top-k candidates. The
x-axis corresponds to the value of k, and the y-axis corresponds
to the averaged IoU scores of the top-k candidates of the COCO-
2017 val set. One can see that the IoU scores of candidates in our
MS-DETR surpass the baseline, which indicates the quality of the
candidates is better with our approach.

We visualize the mean IoU score of top-k candidates in
Figure 1. For each ground-truth object, we select queries
with top-k IoU scores as its candidates. The mean IoU score
is averaged over all ground-truth objects in the COCO-
2017 [2] val set. We can see that with our mixed super-
vision, the mean IoU of top candidates surpasses the base-
line by a large margin, indicating our MS-DETR generates
better candidates.

In Figure 2, we visualize the count of high-quality candi-
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Figure 2. Comparison of candidate numbers. The x-axis cor-
responds to the value of IoU, and the y-axis corresponds to the
number of candidates with IoU exceeding the specified threshold.
The number of candidates is averaged across all ground-truth ob-
jects in the COCO-2017 val set. One can see that the number of
high-quality candidates in our MS-DETR surpasses the baseline
by a large margin.

dates generated by the baseline and our MS-DETR, across
varying IoU thresholds. High-quality candidates are queries
with an IoU exceeding a specific threshold. One can see
that with mixed supervision, our MS-DETR generates more
high-quality candidates than the baseline.

B. Implementation details
We provide the implementation details of architecture (c) in
Figure 2, which performs best among all MS-DETR vari-
ants.

The DETR decoder consists of multiple decoder lay-
ers. For clarity, we take one decoder layer for illustration.
The input queries Q for each decoder layer first go through
cross-attention layer to collect information from image fea-
tures I, resulting in the features after cross-attention:

Qca = CrossAttn(Q, I), (1)

The features after cross-attention layer are then fed into
the self-attention layer, followed by a feed-forward network
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(FFN) to extract the features for one-to-one prediction:

Qsa = SelfAttn(Qca), Q11 = FFN(Qsa), (2)

The features after cross-attention layer are fed into an
additional feed-forward network, yielding the features for
one-to-many predictions:

Q1m = FFN(Qca), (3)

Both one-to-one and one-to-many predictions are de-
rived using shared box and class predictors:

B1m = box(Q1m), S1m = cls(Q1m)

B11 = box(Q11), S11 = cls(Q1m),
(4)

C. Details of one-to-many matching
We provide more details of our one-to-many matching in-
troduced in Section 3.2. The algorithm establishes corre-
spondences between the prediction sets {yi}Ni=1 and the
ground-truth object sets {ȳi}Mi=1, where N is the number
of predictions, M is the number of ground-truth objects.
Each element y in the prediction set consists of classifica-
tion scores s and box prediction b. Similarly, each element
ȳ in the ground-truth object set consists of a ground-truth
category c̄ and bounding box b̄.

Following [3], we assign multiple predictions to one
ground-truth object according to three criteria. We first
compute the matching score between one prediction and
ground-truth pair:

MatchScore(s,b, c̄, b̄) = α · sc̄ + (1− α) · IoU(b, b̄).

We assign each prediction to the ground-truth object with
the highest matching score to it. Then, we filter out low-
quality queries with matching scores lower than the given
threshold τ . Finally, for each ground-truth object, we se-
lect top-k predictions with highest matching scores as the
matched results for this ground-truth object.

Optionally, we can merge the one-to-one matching set
with our previously computed matching set as the final one-
to-many matching set. This is because one-to-one matching
results are derived using Hungarian matching, which may
not align with our computed one-to-many matching results.
For each matching item (yσ(i),yi) in the one-to-one match-
ing set, if it does not exist in the one-to-many matching set,
we add it to the one-to-many matching set. We empiri-
cally find this operation brings slightly (0.1 ∼ 0.2 mAP)
improvement. The detailed procedure is illustrated in Algo-
rithm 1.
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