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1. Reproduction Statement
To facilitate the reproduction of our method, we have

included our code in the supplementary materials. To be
specific, all relevant code has been zipped into the folder
code. This folder contains two sub-folders: GSC, which
puts the implementation of our GSC method on a single
network, and GSC+, for the GSC method implemented on
dual networks. Regarding the benchmark datasets used in
our study, namely Flickr30K, MS-COCO, and CC152K, we
pre-processed the image and text inputs into representations
in line with NCR. This pre-processing approach is also con-
sistent with methodologies used in DECL, MSCN, and Bi-
Cro.

Here, we present a detailed overview of the implemen-
tation of our GSC method in Listing 1. The core aspect of
GSC involves learning the geometrical structures within and
across different modalities. And thus noisy correspondence
can be discriminated by the structural difference between
clean and noisy samples. Such function is mainly imple-
mented in the python file GSC.py in folder model.

1 # Input image and text data pairs and ids.
2 def train(self, images, texts, ids):
3 # Take predicted targets of last epoch.
4 targets = self.targets[ids]
5

6 img_embs, txt_embs = encoder(images, texts)
7 # Cross-modal loss and estimated indicator.
8 sims_cm = sim_module(img_embs, txt_embs)
9 loss_cm, preds_cm = contrastive_loss(sims_cm)

10

11 # Intra-modal loss and estimated indicator.
12 img_sims = sim_module(img_embs) * targets
13 txt_sims = sim_module(txt_embs) * targets
14 sims_im = img_sims @ txt_sims
15 loss_im = contrastive_loss(sims_im)
16 preds_im = cos_sim(img_sims, txt_sims)
17

18 # Record current epoch prediction.
19 self.preds_cm[ids] = preds_cm
20 self.preds_im[ids] = preds_im
21

22 # Purify overall loss
23 loss = targets * (loss_cm + gamma * loss_im)
24 loss.backward()
25

26 # Fit preds_im with GMM and update targets.
27 def update(self):
28 # Fit two-component GMM.
29 gmm = GaussianMixture(n_components=2)
30 gmm.fit(self.preds_im)
31 self.preds_im = gmm.predict(self.preds_im)
32

33 # Update targets.
34 self.targets_cm = beta1 * self.preds_cm +

↪→ (1 - beta1) * self.targets_cm
35 self.targets_im = beta2 * self.preds_im +

↪→ (1 - beta2) * self.targets_im
36 self.targets = min(self.targets_cm, self.

↪→ targets_im)

Listing 1. Simplified Python Code for GSC

In each training epoch, our approach leverages the
targets estimated from the previous epoch to refine the
computation of both cross-modal loss (loss cm) and intra-
modal loss (loss im), intra-modal structures, represented by
img sims and txt sims. Notably, the targets are tensors of
dataset size, which are initialized to ones. As a result, dur-
ing the first epoch, the multiplication of targets with the
losses and structures effectively remains neutral, ensuring
that the optimization process is not impacted.

2. Broader Impacts

In this paper, we tackle the emerging issue of noisy
correspondence in cross-modal learning, a challenge that
significantly hampers the effectiveness of correspondence
learning models. This issue is especially common in large-
scale, real-world multimodal datasets due to constraints in
time and resources. Addressing this problem holds signif-
icant value, not only for cross-modal retrieval but also for
a range of downstream tasks requiring precise alignment
between modalities, such as multimodal classification and
image captioning.

Diverging from previous methods that identify noisy
samples primarily rely on small loss approaches across
modalities, GSC uniquely identifies noisy correspondences
by analyzing differences in both cross-modal and intra-
modal structures, acknowledging the intricate nature of
multimodal learning scenarios. The success of our approach
emphasizes the importance of considering the unique char-
acteristics of multimodal learning.

3. Limitations and Future Explorations

While our proposed GSC method demonstrates promis-
ing results, there are limitations that require acknowledge-
ment. One limitation is that GSC has only been imple-
mented and evaluated in dual-modality scenarios. How-
ever, many multimodal scenarios involve more than two
modalities, such as combinations of video, audio, image
and text, where the likelihood of noisy correspondence in-
creases. Additionally, multimodal datasets often present
challenges beyond noisy correspondence, such as the noisy
label problem. The coexistence of these issues can com-
pound the complexity, as the underlying causes may be in-
terconnected. Therefore, we advocate for further research
to deepen the understanding of these challenges and to de-
velop strategies to mitigate the associated biases and risks.

4. Stability Experiments

In Tab. 1, we show the mean and standard deviation val-
ues of GSC under different noise rates on Flickr30K. To
conclude, the performance of GSC is stable and consistent.



Table 1. Stability experiments on Flicker30K. The average and
standard deviation scores are calculated based on the same exper-
iments repeated for three times.

Flickr30K
Noise Method Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

20% GSC-SGR 77.7 94.8 97.6 59.7 84.4 90.4 504.5
±0.6 ±0.2 ±0.2 ±0.5 ±0.3 ±0.3 ±1.6

40% GSC-SGR 76.4 93.9 97.2 57.2 82.8 89.2 496.6
±0.4 ±0.5 ±0.5 ±0.5 ±0.2 ±0.1 ±1.6

60% GSC-SGR 72.0 91.4 95.4 53.3 79.8 86.7 478.6
±1.1 ±0.2 ±0.5 ±0.5 ±0.4 ±0.2 ±1.0

5. Experiments on SGRAF Backbone

The backbone architectures used by state-of-the-art
models to achieve optimal performance vary. Specifically,
NCR and MSCN employ SGR as their backbone, whereas
DECL and BiCro use an enhanced version, SGRAF, which
is a combination of SGR and SAF. In the main paper, we
primarily discussed GSC’s results using the SGR backbone.
This choice was made because employing a dual-network
strategy with SGRAF would result in an ensemble of four
networks, leading to significant time consumption and re-
duced practical applicability. Moreover, GSC demonstrated
superior performance over other methods even with just the
SGR backbone. In this section, we present additional ex-
perimental results of GSC utilizing the SGRAF backbone,
as shown in Tab. 2. Notably, GSC generally shows im-
proved performance with the stronger SGRAF backbone,
outperforming the second-best method by average recall
sum score gaps of 4.9% under 20% noise, 15.2% under 40%
noise, and 19.7% under 60% noise.

6. Aligned Experiments to DECL and MSCN

In our main paper, we benchmark the GSC method
against SOTA approaches at 20%, 40%, and 60% noise lev-
els, following BiCro. For most SOTAs, except MSCN and
RINCE, we use the results as reported in their respective pa-
pers. Since MSCN only conducted experiments under 50%
and RINCE considered noisy correspondence under a dif-
ferent setting, we reproduced their results under 40% and
60%. Besides, DECL conducted experiments under an ex-
treme noise condition of 80%. In this context, we extended
our comparison to include GSC’s performance against NCR
and MSCN at 50% noise, and against DECL at 80% noise,
as detailed in Tab. 3. The results demonstrate that GSC con-
sistently outperforms other methods at these higher noise
levels.

Table 2. Experiments on SGRAF Backbone on Flicker30K. The
best results are marked by bold.

Flickr30K
Noise Method Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

SGR 55.9 81.5 88.9 40.2 66.8 75.3 408.6
SGRAF 72.8 90.8 95.4 56.4 82.1 88.6 486.1

20% DECL-SGRAF 77.5 93.8 97.0 56.1 81.8 88.5 494.7
BiCro-SGARF 78.1 94.4 97.5 60.4 84.4 89.9 504.7

GSC-SGR 78.3 94.6 97.8 60.1 84.5 90.5 505.8
GSC-SGRAF 78.9 95.5 98.0 61.0 85.3 90.9 509.6

SGR 4.1 16.6 24.1 4.1 13.2 19.7 81.8
SGRAF 8.3 18.1 31.4 5.3 16.7 21.3 101.1

40% DECL-SGRAF 72.7 92.3 95.4 53.4 79.4 86.4 479.6
BiCro-SGARF 74.6 92.7 96.2 55.5 81.1 87.4 487.5

GSC-SGR 76.5 94.1 97.6 57.5 82.7 88.9 497.3
GSC-SGRAF 78.1 94.6 97.4 59.0 83.5 90.1 502.7

SGR 1.5 6.6 9.6 0.3 2.3 4.2 24.5
SGRAF 2.3 5.8 10.9 1.9 6.1 8.2 35.2

60% DECL-SGRAF 65.2 88.4 94.0 46.8 74.0 82.2 450.6
BiCro-SGARF 67.6 90.8 94.4 51.2 77.6 84.7 466.3

GSC-SGR 70.8 91.1 95.9 53.6 79.8 86.8 478.0
GSC-SGRAF 72.9 92.6 95.7 55.7 81.4 87.7 486.0

Table 3. Experiments on Flicker30K with 50% and 80% noise
rates. The best results are marked by bold.

Flickr30K
Noise Method Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

SGR 36.9 68.1 80.2 29.3 56.2 67.0 337.7
50% NCR-SGR 72.9 93.0 96.3 54.3 79.8 86.5 482.8

MSCN-SGR 74.4 93.2 96.0 55.3 80.4 86.8 486.1
GSC-SGR 74.6 92.5 96.3 55.8 81.5 88.5 489.2

SGR 1.5 6.6 9.6 0.3 2.3 4.2 24.5
80% DECL-SGR 44.4 72.6 82.0 33.9 59.5 69.0 361.4

GSC-SGR 60.6 84.5 92.2 44.2 70.5 79.6 431.5

7. Analysis of Hyper-parameters τ1 and τ2

Hyper-parameters τ1 and τ2 are the temperature coef-
ficients in cross-modal and intra-modal loss functions and
noise indicators. These coefficients are crucial as they
scale the similarity measures, thereby controlling separa-
tion. This scaling also enhances the distinction between
clean and noisy samples. In our experiments, we set τ1 =
0.07 and τ2 = 1. Additionally, we have conducted an ab-
lation study on these parameters, as illustrated in Fig. 1.
The results indicate that the performance related to τ2 is
relatively stable. For τ1, the performance is stable when
τ1 < 0.07. A larger τ1 value tends to diminish the discrim-
ination between different samples.



Figure 1. Analysis of hyper-parameters τ1 and τ2 on Flicker30K
with 40% noise. τ1 and τ2 are two temperature coefficients.

Table 4. Analysis of different batch sizes on Flicker30K with 20%
and 60% noise rates. The best results are marked by bold.

Noise Batch Size
Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

32 75.4 93.5 96.7 57.5 83.1 89.2 495.3
20% 64 77.9 94.0 97.7 57.7 84.3 90.1 501.7

128 78.3 94.6 97.8 60.1 84.5 90.5 505.8
192 76.8 94.9 97.7 59.7 84.2 90.1 503.4

32 66.7 89.2 94.6 50.2 77.4 84.6 462.7
60% 64 68.7 91.1 94.9 51.4 79.0 86.1 471.2

128 70.8 91.1 95.9 53.6 79.8 86.8 478.0
192 72.6 90.7 95.8 53.6 80.0 86.9 479.6

8. Analysis of Batch Size

In the main paper, we explored the impact of varying
batch sizes on performance using the Flickr30K dataset un-
der 40% noise condition. Extending this analysis, we now
present additional results for 20% and 60% noise scenarios
in Tab. 4. Consistent with our findings in the main paper,
we observe that larger batch sizes generally enhance perfor-
mance up to an optimal threshold.

9. Analysis of Temporal Ensembling

In our main paper, we conducted experiments both with
and without temporal ensembling to demonstrate its effec-
tiveness. In this section, we present visualizations that show
how the predicted weights change, helping us analyze the
impact of different values of β1 and β2. These visualiza-
tions are detailed in Fig. 2. The comparison between figures
(a) and (c) reveals that the β parameters control the rate at
which the target is updated with the prediction from the cur-
rent epoch. A larger β value corresponds to a faster update
rate. Our results show that various β values are effective in
distinguishing noisy samples. However, due to the memo-
rization effects in deep neural networks (DNNs), smaller β
values, i.e. β < 0.3, eliminate the effects of noisy samples
in a later stage, during which the retrieval model can overfit
on noisy samples.

10. Visualization of noisy samples in CC152K
The CC152K dataset is a real-world dataset character-

ized by 3% to 20% noisy correspondence. In our study, the
GSC method demonstrates superior robustness against this
real-world noise, evidenced by its enhanced performance
on the CC152K dataset. Further illustrating this, Fig. 3 vi-
sualizes some of the noisy samples in CC152K identified
by GSC. These samples are selected based on their over-
all weight y, which falls below the threshold of 0.1. We
observed that the majority of these detected noisy pairs are
either completely or partially mismatched.

The reasons for these mismatches vary. A portion of
these noisy pairs, while related as they originate from the
same web source, are not directly descriptive of each other.
In some cases, mismatches arise from efforts to protect per-
sonal information. For the partially mismatched pairs, the
text often describes only a fragment of the image. This par-
tial correspondence can lead to ambiguities, as the same text
could relate to multiple images within the dataset.

11. Comparison to CapFilt
The vanilla CapFilt module utilizes additional COCO-

pretrained reference model to filter samples with noisy cor-
respondence before training. Such a strategy will degen-
erate when the target dataset differs in distribution from
COCO. In Tab. 5, we adopt the same process of CapFilt
pre-trained on COCO and verify its power on Flickr30K
against GSC, under various simulated noise levels. GSC
significantly outperforms CapFilt, confirming the merit of
considering training dynamic.

Table 5. Comparison to CapFilt module on Flickr30K.
Noise Method Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

20% CapFilt 76.9 91.8 96.0 54.8 81.5 87.8 488.8
GSC 78.3 94.6 97.8 60.1 84.5 90.5 505.8

40% CapFilt 72.2 92.4 96.4 52.8 79.2 86.6 479.6
GSC 76.5 94.1 97.6 57.5 82.7 88.9 497.3

60% CapFilt 68.9 89.5 94.2 49.5 76.4 84.6 463.1
GSC 70.8 91.1 95.9 53.6 79.8 86.8 478.0



Figure 2. The changing values of clean and noisy sample weight with the noise rate 40% on Flicker30K when β1 and β2 are both 0.7, 0.5
and 0.3. β1 and β2 parameters are separate momentum coefficients for the cross-modal and intra-modal temporal ensembling.

Figure 3. Visualization of noisy data pairs in CC152K. The red color means the text is mismatched to the image.
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