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7. System Prompt for GPT in Keyword Extrac-
tion

Here we provide the system prompt we use in keyword ex-
traction in Table 6. After setting the system prompt, we
send instructions to GPT and get responses containing the
keywords separated by commas. Then we split the response
and send the keywords for the following procedures.

System Prompt

You are a helpful assistant. You can help me by answering
my questions. I will give you some instructions for vision-
language navigation, you need to give me the key objects that
are mentioned in this instruction. Key object is the noun or
noun phrase that a navigation agent can use as milestone.

The query will be given by:

Instruction: (QUERY)

You must respond to any queries or answer in the following
way:

Query: (QUERY) Answer: (ANSWER) Therefore the answer
is: (TARGET_OBJETCTS)

The key objects in (TARGET_OBJETCTS) must appear in the
instruction and are separated by commas.

Table 6. System Prompt for keyword extraction from instructions.

8. Iterative REVERIE

Here we further verify the effectiveness of our method on
another navigation benchmark, REVERIE. REVERIE [36]
is a benchmark for VLN with high-level instructions. The
difference between REVERIE and R2R is that REVERIE
replaces the instruction in R2R datasets with high-level in-
structions, which mainly describe the target location and
objects. In contrast, R2R instructions provide detailed guid-
ance to the agent along the ground truth navigation path.

To evaluate the agent under the iterative vision-and-
language navigation setting of REVERIE, the benchmark
needs to be transformed into the iterative version, which
contains a tour file describing the episodes’ order in which
the instructions should be issued to VLN agents. Follow-
ing [25], we generate the tours that minimize the distances
between the end and starting points between the episodes
in the tour. To this end, we employ Lin-Kernighan heuris-
tic (LKH) , which is an efficient solver for the asymmetric
travel salesman problem.

The comparison between our method, OVER-NAV and
the baseline, HAMT is shown in Table 7. Our method can

still achieve better performance in the challenging setting.
Note that we report the performance of the checkpoint with
the highest t-nDTW scores for both models, which is dif-
ferent from the original paper of HAMTI[6].

9. Illustration of Two OVER-NAV Agents
9.1. OVER-NAV with HAMT

In Fig. 4, we present an overview of our method as applied
to HAMT, the VLN agent for the discrete environment dis-
cussed in this paper. The illustration focuses on the data
flow during step ¢ of episode . The HAMT part of Fig. 4
refers to IVLN[25].

The upper and lower sections of Fig. 4 depict OVER-
NAV and HAMT, respectively. Within the HAMT frame-
work, the language instruction for episode ¢ undergoes pro-
cessing in the instruction transformer, generating an em-
bedding sequence of equal length, inclusive of the [CLS]
and [SEP] tokens. Each embedding in the sequence corre-
sponds to the instruction word in the same position. Con-
currently, the agent captures observations during naviga-
tion, forwarding them to the vision transformer to extract
image features. The ViT state feature, denoted as si, is pro-
duced by the vision transformer using both observations and
angles. HAMT further maintains a history queue contain-
ing state-action pairs from previous steps within the cur-
rent episode. The history transformer processes the his-
tory queue and generates the history embeddings. HAMT
employs a cross-modal transformer encoder to fuse cross-
modal inputs, where instruction embeddings serve as the
text modal, while history and observation embeddings func-
tion as the visual modal. Notably, the instructions trans-
former, vision transformer, and history transformer un-
dergo pre-training on proxy tasks before being frozen dur-
ing the navigation task training in HAMT. Finally, the fi-
nal model output is the action prediction a! for the current
step. HAMT then appends the state-action pair of the cur-
rent step, st and a’, to the history queue.

OVER-NAV prepares the keywords as described in Sec-
tion 3. Subsequently, OVER-NAV leverages the same in-
struction transformer to derive embeddings for each key-
word. Similar to the instructions, we add [CLS] and [SEP]
tokens to each keyword, utilizing the embedding of the
[CLS] token as the representation for the respective key-
word. After the omnigraph fusion with the attached at-
tributes, the keyword embeddings are arranged based on
the distance metric d} and are appended to the instruction



embeddings. The [SEP] token at the end of the instruc-
tion, serves as a separator between the two sections. Ul-
timately, the concatenated embedding functions as the text-
modal representation and is transmitted to the cross-modal
transformer encoder.

9.2. OVER-NAYV with MAP-CMA

Fig. 5 illustrates the framework of our method when applied
to MAP-CMA, the VLN agent in the continuous environ-
ment in this paper. The MAP-CMA part of Fig. 5 refers to
IVLN [25].

The upper/bottom part of Fig. 5 shows MAP-CMA and
OVER-NAV respectively. In MAP-CMA, the depth encoder
encodes the depth images as depth embeddings and a bidi-
rectional LSTM extracts the instruction embeddings from
instructions. The segmentation map and occupancy map
are concatenated and sent to the map encoder to produce
the map embedding. The first GRU module serves as the
state encoder, which encodes the depth embedding and map
embedding at step t as the state embedding. The instruc-
tion attention is performed with instruction embeddings and
state embedding to text embedding. Later the text embed-
ding is sent to the visual attention module, which performs
attention on the feature maps of depth images and map im-
ages. The second state encoder, i.e., the GRU module, takes
state embedding, text embedding, depth embedding, map

embedding, and hidden state hg‘l)l as inputs, and generates

the predicted action a; and new hidden state hi‘” as outputs.

To incorporate OVER-NAV to MAP-CMA, we use the
instruction bidirectional LSTM for keyword embedding ex-
traction. Each keyword is represented by the [CLS] token
embedding. After omnigraph fusion, the positional infor-
mation, e.g., heading and distance, is fused to the keyword
embeddings. Then we perform the keywords attention with
text embedding as the query. Finally, the omnigraph key-
word context is sent to the second state encoder to aid the
action prediction. Similar to Section 9.1, the omnigraph
keyword context provides the distribution information of
detected objects in previous episodes.

10. Code Implementation

We further provide the code implementation of our method
in discrete environments, i.e., on HAMT[6] in the supple-
mentary material.



Val-Seen Val-Unseen
# Model TL 0st SRT SPLT t-nDTW 1 TL 0st SRT SPLT t-nDTW?
1 HAMT 9.8 402 22 +1 23 +1 20 +1 38 +1 9.6 +01 20 +£2 22 +1 19 +0 28 +1
6 Ours 9.8+03 37 +2 40 +1 35+2 44 +1 8.9 +02 24 +1 25 +2 22 +1 30 +1
Table 7. The comparison between HAMT and ours on REVERIE dataset.
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Figure 4. The overview of our method combined with HAMT.
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Figure 5. The overview of our method combined with MAP-CMA.



