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Supplementary Material

A. More Discussions of Universal Approxima-
tion Theory (UAT) Analysis on NeRV

We provide more analysis and discussions of UAT analy-
sis on the NeRV system. We define the problem that current
NeRV systems are attempting to address and provide a com-
parison with existing video neural coding pipelines.

A.1. Implicit Neural Video Coding Problem

Following the pipeline of Implicit Neural Video Coding
(INVC) presented in Sec. 4.2 , we recall the proposed Im-
plicit Neural Video Coding Problem (INVCP) as follows.

Problem A.1. (INVC Problem). The goal of Implicit Neu-
ral Video Coding is to find out the optimal design of the
decoder D and encoder E in pursuit of minimal param-
eter quantity Param(D) and embeddings {et = E (t) ∈
Rdt

in}Tt=1 (where d = dtin is often the same for all t in ex-
isting NeRV systems) under a certain approximation error
ϵ between the reconstruction Ṽ and a given video sequence
V ,

argmin
D,E

Param (D) +

T∑
t=1

dtin,

s.t. LD, wD ∈ [1,∞) , sup
∑

∥Ṽt − Vt∥ ≤ ϵ, t ∈ [1, T ].

In the practice of INVC research, we usually use the dual
problem of A.1 to determine the optimal architecture of a
model to achieve a certain level of accuracy for fitting the
video. We name it the Dual Implicit Neural Video Coding
Problem (DINVCP).

Problem A.2. (Dual INVC Problem). Given a certain pa-
rameter quantity µ, the Dual INVC problem aims to deter-
mine the optimal design of decoder D and encoder E to
minimize the minimal approximation error between the re-
construction Ṽ and the given video sequence V ,

argmin
D,E

sup
∑

∥Ṽt − Vt∥,

s.t. LD, wD ∈ [1,∞) ,Param (D) +

T∑
t=1

dtin ≤ µ, t ∈ [1, T ].

In practice, when using a NeRV model to represent a
given video within a certain model size limit µ through end-
to-end training, it is trying to solve the DINVCP.

A.2. Comparison between DINVCP and Previous
Neural Coding Pipelines

Distribution-Preserving Lossy Compression (DPLC) is pro-
posed by [30] motivated by GAN-based image compres-
sion [2]. It is defined as follows:

min
E,D

EX,D[d(X,D(E(X)))] + λdf (pX , pX̃),

where E,D,X, X̃ are encoder, decoder, given input and
reconstruction, df is a divergence which can be estimated
from samples. DPLC emphasizes the importance of main-
taining distribution consistency for effective compression
and reconstruction.

[26] proposes Rate-Distortion Optimization (RDO).
Later, [3] reveals the importance of perceptual quality and
proposes the Perception-Distortion Optimization (PDO) as

min
pX̃|Y

d(pX , pX̃) s.t. E[∆(X, X̃)] ≤ D,

where ∆ is the distortion measure and d is the divergence
between distributions. Furthermore, [4] defines the Rate-
Distortion-Perception Optimization (RDPO) as

min
pX̃|X

I(X, X̃) s.t. E[∆(X, X̃)] ≤ D, d(pX , pX̃) ≤ P,

where I denotes mutual information.
The primary objective, which also serves as the main ob-

stacle in the aforementioned pipelines, is that density esti-
mation is not only costly but also challenging to estimate ac-
curately. Different from DPLC, PDO, or RDPO, DINVCP
does not need to model the distribution of the given signal
explicitly. In fact, the distribution of input images or videos
is difficult to approximate. Whether it is approached by
minimizing ELBO or through adversarial training [8, 13],
there is always a certain gap or mismatch. Besides, other
density estimation methods, such as flow-based or diffusion
models, suffer from huge computational costs [11, 23]. In
contrast, NeRV system implicitly models the unknown dis-
tribution of a given signal via specific decoding computa-
tion process under certain model parameter quantity con-
straints. The calculation process per se is regarded as the
side information [12, 34].

This approach of implicitly modeling distributions
through computational processes under parameter quantity
constraints aligns with some current perspectives that sug-
gest the intelligence of Large Language Models (LLM)
emerges from data compression [7, 22]. LLMs such as GPT



aim to transfer as much data as possible to models of the
same size for learning (and continue to increase the model
size after learning) to achieve information compression and
efficient information coding. However, the NeRV system
strives to compress the model size as much as possible for
a given video, emerging with robust representations with
generalized capability.

The improvement of PNeRV in terms of perceptual qual-
ity confirms this conjecture. By upgrading the model struc-
ture and training with only MSE loss, PNeRV emerges bet-
ter perceptual performance without having to estimate the
signal’s unobtainable prior distribution.

A.3. Proof of Theorem 1

Following the definitions given in Sec. 4, the width w of N
is named as max di, {di ∈ N}Li=1. Once the minimal width
w∗ = wmin (din, dout) is estimated by din, dout, such that,
for any continuous function f : [0, 1]din → Rdout with
ϵ ≥ 0, there exists a N with input dimension din, hidden
layer widths at most w∗, and output dimension dout that
ϵ−approximates f :

sup
x∈[0,1]din

∥f (x)−N (x) ∥ ≤ ϵ.

The goal of Theorem 1 is to determine the minimum param-
eter demand when ϵ−approximates the implicit F which
represents the given video. We recall Theorem 1 as Theo-
rem A.1 as follows for better illustration.

Theorem A.1. For a cascaded NeRV system to ϵ-
approximate a video V which is implicitly characterized
by a certain unknown L-Lipschitz continuous function F :
K → Rdout where K ⊆ Rdin is a compact set, then the
upper bound of the minimal parameter quantity Param(D)
is given as

Parammin(D) ≤ d2out

(
O (diam (K))

ω−1
F (ϵ)

)din+1

.

Before we start, we will recall the setup and demonstrate
some mathematic concepts and lemmas.

Definition A.1. A function g : Rdin → Rdout is a max-
min string of length L ≥ 1 on din input variables and dout
output variables if there exist affine functions ℓ1, . . . , ℓL :
Rdin → Rdout such that

g = σL−1(ℓL, σL−2 (ℓL−1, · · · , σ2 (ℓ3, σ1 (ℓ1, ℓ2)) · · · ) .

The definition of max-min string and DMoC (Def. 3 ) are
first introduced in [9] and [10]. We introduce two lemmas,
which were presented as Propositions 2 and 3 in [10].

Lemma A.1. [10] For every compact K ⊆ Rdin , any con-
tinuous f : K → Rdout and each ϵ ≥ 0, there exists a

max-min string g on din input variables and dout output
variables with length(

O (diam (K))

ω−1
f (ϵ)

)din+1

,

for which
∥f − g∥C0(K) ≤ ϵ.

Lemma A.2. [10] For every max-min string g on din input
variables and dout output variables with length L and every
compact K ⊆ Rdin , there exists a RELU net N with input
dimension din, hidden layer width din + dout, and depth L
that computes x 7→ g(x) for every x ∈ K.

Lemma A.3. [21] For any p ∈ [1,∞), RELU nets of
width w are dense in LP (Rdin ,Rdout) if and only if w ≥
max{din + 1, dout}.

The proofs of Lemma A.1 and A.2 can be found in the
Sec. 2.1 and Sec. 2.2 of [10]. Lemma A.3 is the Theorem
1 demonstrated in [21] with its proof. Now we provide the
proof of Theorem A.1 as follows.

Proof. From Lemma A.1, the implicit function FV which
represents the video V can be approximated by one max-
min string g. It is worth mentioning that FV is supposed to
be continuous because video can be considered as a slice of
the real world. The length of this max-min string g is given
by Lemma A.1. According to Lemma A.2, there exists a
RELU net Ng with the same input and output dimensions
that fit this max-min string. So, the minimal parameters of
Ng , also the sum of weights for each layer, is

Param =

L∑
l=1

wlwl−1,

where wl is width in each hidden layer and L is given in
Lemma A.1. Noticed that the whole width w of a model is
the upper bound of all hidden layer widths {wl}Ll=0. wmin is
the minimum estimate for this upper bound, wl ≤ wmin ≤
w. wmin is further contracted from din+dout to max{din+
1, dout} by [21] (Lemma A.3).

Thus, the minimal parameters of Ng under a certain error
is no longer than

Parammin ≤ w2
min

(
O (diam (K))

ω−1
f (ϵ)

)din+1

= d2out

(
O (diam (K))

ω−1
f (ϵ)

)din+1

,

where wmin = dout for video V : N → Rdout . Equality is
reached when each layer width reaches the upper bound of
minimal width, the worst case.



Although the upper bound of Param(D) is fixed regard-
less of the detailed architecture, the actual performance of
serial NeRV will be influenced by structure design, param-
eter initialization, activation functions, loss functions, and
optimizer.

B. More Related Works

Comparison with Other Subpixel-based Upsampling
Operators. The NeRV system aims at reconstructing high-
resolution videos through decoding low-dim embeddings.
Therefore, proper upsampling operators are crucial for its
performance. Existing subpixel-based upsampling opera-
tors are not efficient enough for the NeRV system. De-
conv [36] pads the subpixels with zeros and passes them
through a Conv layer, resulting in block artifacts [20].
PixelShuffle [24] first expands the feature map channels
through a CONV and then rearranges them into the target
subpixels. However, the desired subpixels of a given po-
sition are only related to the expanding channels of the
same position, ignoring contextual information, as shown in
Fig. ?? of the main text. Additionally, PixelShuffle encoun-
ters an exponential explosion of required channels when the
upsampling ratio is large.
Comparison with INR on Images. [25] (SIREN) uses
sine as a periodic activation function to model the high-
frequency information of a given image [29] and performs a
sinusoidal transformation before input [35] tries to directly
modify an INR without explicit decoding. The main differ-
ence between these methods and ours is that we consider the
input coordinate-pixel pairs to be dense for the INR on im-
age coding. In a natural image, the RGB value at a specific
position is often closely related to its neighboring positions.
However, for high-resolution videos, the gap between ad-
jacent frames can be much larger, both in terms of pixels
and semantic terms. This situation is akin to only observing
partial pixels from a given image.
Comparison with Self-attention Module. Self-attention
(SA) and Multi-head Self-attention (MSA) modules [17, 28,
31, 32] compute the response at a position by attending to
all positions, which is similar to KFC. The major defect
of SA and MSA when adopted in NeRV is that the compu-
tational complexity and the space complexity are too high
to efficiently compute the global correlations between arbi-
trary positions, especially the computational cost (O(n2d))
between queries and keys for high-resolution feature maps.
KFC not only captures long-range dependencies but also
achieves low-cost rescaling, both of which are significant
for NeRV.

C. Additional Results

Unless otherwise specified, all models utilized in the addi-
tional results are trained on a 3M model for 300 epochs.

Figure C.1. PSNR of video compression on UVG.

Figure C.2. SSIM of video compression on UVG.

C.1. Comparison of Generalization Ability by Video
Interpolation Results

Indeed, the concepts of approximation and generalization
are distinct topics within the field of deep learning the-
ory [1, 19]. Understanding the causal relationship between
overfitting and the generalization capacity of NeRV neces-
sitates further investigation. Existing NeRV models always
focus on the models’ approximation capabilities through
overfitting training.

Nonetheless, we also evaluate the generalization perfor-
mance of our proposed PNeRV through a video interpola-
tion experiment. Adhering to the experimental methodol-
ogy employed in [6] and [37], the model is trained using
odd-numbered frames and then tested with unseen even-
numbered frames. The results, presented in Table C.1, indi-
cate that PNeRV surpasses most baseline methods. Future
research will focus on the theoretical analysis and enhance-
ment of PNeRV’s generalization abilities.

C.2. Comparison of Video Compression and Dis-
cussion of Training Difficulties

The video compression comparison of PNeRV with other
NeRV models in terms of PSNR and MS-SSIM is shown in
Fig. C.1 and Fig. C.2. Following the same settings utilized



Beauty Bospho Honey Jockey Ready Shake Yacht Avg.

NeRV [5] 28.05 30.04 36.99 20.00 17.02 29.15 24.50 26.54
E-NeRV [15] 27.35 28.95 38.24 19.39 16.74 30.23 22.45 26.19
H-NeRV [6] 31.10 34.38 38.83 23.82 20.99 32.61 27.24 29.85
DiffNeRV [37] 35.99 35.10 37.43 30.61 24.05 35.34 28.70 32.47

PNeRV 33.64 34.09 39.85 28.74 23.12 31.49 27.35 31.18

Table C.1. Video interpolation results on 960 × 1920 UVG in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 20.39 21.85 21.73 28.81 17.35 19.97 24.49 19.76 21.79
DiffNeRV 22.95 23.72 21.78 30.37 26.02 21.55 22.78 21.00 23.77

PNeRV 21.69 24.28 25.21 30.01 27.32 22.61 22.84 22.61 24.57
Table C.2. Video inpainting results using center mask on 960 × 1920 DAVIS in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 0.665 0.733 0.677 0.650 0.489 0.650 0.859 0.789 0.725
DiffNeRV 0.767 0.815 0.667 0.949 0.817 0.754 0.852 0.844 0.808

PNeRV 0.802 0.844 0.792 0.947 0.862 0.801 0.874 0.812 0.842
Table C.3. Video inpainting results using center mask on 960 × 1920 DAVIS in SSIM.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 23.16 20.94 26.54 31.70 17.36 21.32 26.89 21.05 23.62
DiffNeRV 25.70 24.71 26.59 34.74 25.93 24.51 26.61 24.27 26.63

PNeRV 24.96 24.18 26.62 34.84 27.50 24.98 26.85 22.13 26.51
Table C.4. Video inpainting results using disperse mask on 960 × 1920 DAVIS in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 0.728 0.661 0.779 0.957 0.490 0.685 0.889 0.794 0.748
DiffNeRV 0.819 0.832 0.795 0.972 0.827 0.799 0.892 0.897 0.854

PNeRV 0.843 0.854 0.806 0.975 0.877 0.836 0.910 0.866 0.871
Table C.5. Video inpainting results using disperse mask on 960 × 1920 DAVIS in SSIM.

Figure C.3. Example of training difficulty of different NeRV meth-
ods in 3M size.

in [6, 37], we evaluate the video compression comparison
with 8-bit quantization for both embeddings and the model
without model pruning.

PNeRV has demonstrated remarkable performance, no-
tably outperforming conventional encoding pipelines like
H264 [33] and H265 [27], and possesses substantial ad-
vantages over several traditional neural video coding mod-
els [14, 16, 18], particularly at low bit rates. Compared to
INR-based methods, PNeRV has also achieved competitive
results and outperforms other NeRV methods [5, 6, 37] in
terms of PSNR.

For detailed experimental settings, PNeRV adjusts the
size of the decoder and the dimensions of the input diff em-
bedding to validate the encoding performance of the pro-
posed method across various bit rates. At low bit rates, the
encoding performance of the model may experience some



degradation. We believe this is due to the diversity and com-
plexity of the modules required by PNeRV. Maintaining a
certain amount of parameters (such as the number of chan-
nels in convolutional layers) is crucial for preserving perfor-
mance. This ensures that the model has sufficient capacity
to handle the challenges posed by low-bit rate encoding.

It is worth noting that all implicit models encounter sig-
nificant training challenges when dealing with large param-
eters, such as those exceeding 5M. As a result, these models
often converge to local minima, leading to trivial outputs.
This issue poses a significant obstacle to the compression
performance of all NeRV methods, particularly when the
Bpp value increases. Some examples of training failure are
shown in Fig. C.3, where models are 3M under the same
conditions.

C.3. Comparison of Robustness by Video Inpaint-
ing Results

We evaluate the robustness of different methods using video
inpainting tasks following the same setting as in [6] and
[37], which use a center mask and disperse mask. The cen-
ter mask uses a rectangular area that occupies one-fourth of
the width and height of the original frame, positioned at its
center. The disperse mask comprises five square areas, each
measuring 100 × 100 pixels, positioned in the four corners
and the center of the frame. The pixel value of areas in
the masks is reset to 0. The trained models in video regres-
sion tasks will be directly utilized for inpainting without any
fine-tuning. Models take the masked frames as input and try
to predict the original ones.

The results using the center mask are provided in
Tab. C.2 and Tab. C.3. The dispersed ones are in Tab. C.4
and Tab. C.5. PNeRV acquires competitive results with both
the center mask and the disperse mask, indicating robust
modeling capability.

C.4. More Visualization Examples for Perceptual
Quality

We show some more examples of qualitative comparisons
between different models.

Shown in Fig. D.4, the results of PNeRV are smoother
and less noisy. For instance, in “Lucia” and “Horse-low”,
PNeRV pays more attention to the geometric pattern of
the main objects and ignores those high-frequency details
of the background scene. Other baseline methods cannot
reconstruct frames at such a semantic level. Due to the
lack of high-level information guidance and a global recep-
tive field, baseline methods are hard to reasonably allocate
model weights to more important objects, e.g., red water-
pipe in “Breakdance-flare” and patterns in “Cows”.

Shown in Fig. D.5, the comparison at different times-
tamps of the same video indicates some specific common
issues of different models. Overlapping and noisy pat-

terns have occurred in the results of DiffNeRV [37] and
HNeRV [6], such as the grass and hands in “Hike”. EN-
eRV [15] and NeRV [5] often result in color deviation and
blurring, e.g., backpack in “Hike” and motor in “motor-
bump”. PNeRV achieves a balance between preserving de-
tails and maintaining semantic consistency. Compared to
DiffNeRV, which also uses the difference between frames
as input, the latter’s reconstruction of details is unbiased.
However, human attention to visual elements under differ-
ent semantics should be different. Improving the recon-
struction results through high-level information is one of
PNeRV’s pursuits.

C.5. Discussion on the Failure Cases

As shown in Table 2 , PNeRV fails in the “Dog” which is
blurred and mixed with jitter and deformation. Also, the
“Soapbox” video, which comprises two clips from entirely
different scenes connected by a few frames where the cam-
era rotates through a large angle, poses a challenge. So far,
PNeRV has not been able to handle severe temporal incon-
sistency effectively.

C.6. Video Examples

We provide some video examples from DAVIS as follows.
From the video comparison, it can be seen that the re-
constructions of NeRV have lost spatial details, and it is
difficult for DNeRV to reconstruct videos containing per-
vasive scattered high-frequency details. Whether there is
large motion or high-frequency details in the given videos,
PNeRV is more robust in modeling the spatial consistency,
leading to better perceptual quality in reconstructions. The
links to the examples are presented as follow.
Dance-jump: https://drive.google.com/file/
d / 18JZq1BCkBJWCkZs - 71OB7wI6j _ Vma0vP /
view?usp=drive_link
Elephant: https://drive.google.com/file/d/
1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?
usp=drive_link
Kite-surf: https://drive.google.com/file/d/
1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?
usp=drive_link
Parkour: https://drive.google.com/file/
d / 1jWbJuoc - GCz2N _ dXAJSER0PSy7ThrMr -
/view?usp=drive_link
Scooter-grey: https://drive.google.com/file/
d / 1vs22Ru - AwAQuG710qbF72lwdHS1ABy83 /
view?usp=drive_link

D. Additional Ablation Studies
D.1. Ablation Results of Model Structure Details

We ablate the structure details of PNeRV in 3M on
“Rollerblade” in 480× 960 from DAVIS, given in Tab. C.7,

https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link


Models Bmx-B Camel Dance-J Dog Drift-C Parkour Soapbox Avg. A.P.G

NeRV [5] 29.42/0.864 24.81/0.781 27.33/0.794 28.17/0.795 36.12/0.969 25.15/0.794 27.68/0.848 28.38/0.835 -
E-NeRV [15] 28.90/0.851 25.85/0.844 29.52/0.855 30.40/0.882 39.26/0.983 25.31/0.845 28.98/0.867 29.75/0.875 -
HNeRV [6] 29.98/0.872 25.94/0.851 29.60/0.850 30.96/0.898 39.27/0.985 26.56/0.851 29.81/0.881 30.30/0.874 -
DiffNeRV [37] 30.58/0.890 27.38/0.887 29.09/0.837 31.32/0.905 40.21/0.987 25.75/0.827 31.47/0.912 30.84/0.892 -

Ablation Study

Bilinear + Concat 24.85/0.783 24.49/0.793 28.32/0.806 26.19/0.723 31.92/0.943 25.09/0.793 29.23/0.872 27.16/0.816 -4.07
Bilinear + GRU 29.86/0.874 25.00/0.811 29.16/0.830 27.11/0.753 32.09/0.945 26.43/0.845 29.10/0.874 28.39/0.847 -2.84
Bilinear + LSTM 26.22/0.792 26.87/0.871 27.85/0.788 26.71/0.741 33.65/0.946 25.82/0.820 29.42/0.881 28.07/0.834 -3.16
Bilinear + BSM 29.97/0.877 27.35/0.881 29.49/0.838 27.14/0.756 34.34/0.968 26.15/0.835 29.14/0.876 29.08/0.862 -2.15

DeConv + Concat 28.06/0.840 24.07/0.774 27.86/0.792 25.16/0.693 34.97/0.961 22.13/0.683 29.33/0.877 27.37/0.803 -3.86
DeConv + GRU 27.52/0.827 28.16/0.900 29.09/0.825 25.76/0.706 37.91/0.980 25.09/0.793 29.54/0.882 29.00/0.845 -2.23
DeConv + LSTM 30.15/0.882 26.49/0.859 28.30/0.805 25.94/0.712 34.91/0.956 26.35/0.842 30.26/0.895 28.91/0.850 -2.32
DeConv + BSM 31.56/0.906 27.18/0.878 29.77/0.847 30.09/0.868 36.03/0.971 26.09/0.831 29.00/0.872 29.96/0.881 -1.27

KFc + Concat 27.51/0.826 25.02/0.816 29.02/0.831 28.80/0.831 36.82/0.974 25.12/0.796 28.53/0.864 28.68/0.848 -2.55
KFc + GRU 31.69/0.910 25.88/0.848 28.32/0.805 28.47/0.813 33.25/0.942 26.68/0.853 30.89/0.903 29.31/0.868 -1.92
KFc + LSTM 29.16/0.862 27.24/0.878 28.90/0.825 29.28/0.842 32.73/0.935 26.62/0.839 29.35/0.879 29.04/0.866 -2.19
KFc + BSM (PNeRV) 31.05/0.896 27.89/0.892 30.45/0.873 31.08/0.898 40.23/0.987 27.08/0.867 30.85/0.902 31.22/0.902 +0

Table C.6. Ablation results on DAVIS subset in PSNR and MS-SSIM, where Avg. is the average PSNR and A.P.G is the average PSNR
gap. Every result is reported by corresponding model trained in 300 epoch and 3M size.

40×80 20×40 10×20

PSNR 31.94 31.33 30.50
SSIM 0.960 0.954 0.947

Table C.7. Embedding size in PNeRV-L.

1×1 3×3 5×5

PSNR 31.92 31.94 31.90
SSIM 0.960 0.960 0.961

Table C.8. Kernel size in BSM.

ReLU Leaky GeLU w/o BN

PSNR 31.80 31.86 31.94 31.53
SSIM 0.959 0.961 0.960 0.959

Table C.9. Activation and BN in KFC.

Tab. C.8 and Tab. C.9. The alternation of kernel size or
activation has little influence. Encoding more information
into embeddings will help the decoder reconstruct better
and also increase the overall size.

D.2. Ablation Results of Proposed Modules on
DAVIS

To verify the contribution of different modules in PNeRV,
we conduct ablation studies on (1) upscaling operators and
(2) gated memory mechanisms. We compare KFc with two
upscaling layers, Deconv and Bilinear, where “Deconv” is
implemented by “nn.ConvTranspose2d” from PyTorch, and
“Bilinear” is the combination of bilinear upsampling and
Conv2D. KFc achieves better performance due to the global
receptive field regardless of what fusion module it is com-
bined with.

Also, to illustrate the importance of adaptive feature fu-
sion and improvement of BSM, we compare BSM with
Concat, GRU and LSTM, where “Concat” means directly
concatenating two features from different domains together.
The ablation results suggest that the adaptive fusion of fea-
tures from different domains significantly improves perfor-
mance, and BSM outperforms other memory cells due to
the disentangled feature learning. The last row is the final
PNeRV and the last column shows PSNR gaps when chang-
ing modules in PNeRV.

D.3. Visualization of Feature Maps

To verify the effectiveness of hierarchical information
merging via KFC and BSM, we visualize some feature
maps in PNeRV-L which was pretrained on “Parkour” as
examples. Those feature maps shown in Fig. D.6 are from
different channels and layers using the same frame as input.
Those in Fig. D.7 are all from the 4-th layer but using dif-
ferent frames as input. The feature maps from 4-th layer are
in 480×960, and the original frames are in 960×1920. For
each lower layer, the height and width are halved compared
to the upper layer. “Before” and “After” refer to the feature
maps before and after passing through BSM or after.

Fig. D.6 illustrates how the coarse features are refined
by BSM. Different channels respond to distinct spatial pat-
terns of video frames, including factors like color, geomet-
ric structure, texture, brightness, motion, and so on. Before
being processed by the BSM, the vanilla features are se-
mantically mixed and entangled. However, the BSM is able
to decouple these features and distinguish their specific ef-
fects, resulting in more refined and distinct outputs.

Additionally, for imperfect feature maps, BSM can add
details or balance the focus of the reconstruction across var-
ious areas in the frames. These phenomena are commonly
observed in the 4-th layer, which is responsible for prepar-
ing for fine-grained reconstruction, as demonstrated in Fig-
ure. D.7. This shows the effectiveness of BSM in enhancing
the quality of feature maps and improving the overall recon-
struction.



Figure D.4. Visual comparison examples on various videos.



Figure D.5. Visual comparison examples on the same video by same models. Corresponding time stamps are shown in the bottom left.



Figure D.6. Visualization examples of feature maps in different layers.“C” refers to the channel number and “L” is the layer number.
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