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6. Supplementary

We propose the first prompt-based OoD detection method.
Our core idea has two main aspects: 1) Generating
prompts directed at OoD objects using information from
the anomaly score map and 2) employing a prompt-based
segmentation model to provide accurate masks for OoD ob-
jects. In this phase, the segmentation model, refined through
prompts, accurately identifies and segments out OoD ob-
jects, enhancing the overall detection accuracy and effi-
ciency. Together, these novel steps demonstrate exceptional
performance in the field of OoD detection, offering a new
perspective for the identification of OoD objects. In this
supplementary, we include more details on the following
aspects:

* We present the implementation details of acquiring train-
ing data using the OE method in Section 6.1.

* We delineate the specifics of generating OoD object
masks in Section 6.2.

* We provide a detailed description of the primary evalua-
tion metrics used in our experiments, elucidating the sig-
nificance of each metric and the performance of our S2M
method across these metrics in Section 6.3.

* We detail the efficiency analysis, demonstrating the oper-
ational effectiveness of our approach in Section 6.4.

* We employ FastSAM in stead of the standard SAM in
Section 6.5.

* We utilize an entropy-based anomaly score in Section 6.6.

* We present visualizations of some S2M results in Sec-
tion 6.10.

6.1. Details of Outlier Exposure

During the preparing of training dataset, we use the OE
[23, 32] strategy to generate the OoD training images. We
use objects in COCO dataset as OoD objects, and use im-
ages in Cityscapes dataset as background. We exclude
those objects from the COCO that are also included in the
Cityscapes. The left column of Fig. 11 shows the generated
training image. Then, we use RPL [32] to get the anomaly
score on these training images. The anomaly scores of these
training images are shown in the middle column. The orig-
inal anomaly scores, which generally lie between -20 and
10, are not suitable for visualization. For visualization pur-
poses, we have normalized these scores to a scale of O to
255 for each image. It should be noted that the training pro-
cess uses the original anomaly scores, not the normalized
ones. Right column show the training label of OoD ob-
jects. We generated the smallest bounding boxes based on
the masks of the OoD objects, which serve as the training

labels. During the training of the prompt generator, we uti-
lize the anomaly scores as inputs and employ the generated
boxes as prompts.

6.2. Details of Mask Generation

During the inference, we use the produced box prompts to
generate masks of OoD objects. The prompt generator is
designed to process anomaly scores as input, thereby gen-
erating box prompts that highlight OoD objects. In addi-
tion, it concurrently produces confidence scores associated
with these prompts. To enable a direct comparison between
our S2M method and current mainstream approaches using
the same metrics, the corresponding confidence scores of
these prompts are assigned to the pixels in the generated
masks for the OoD objects. For areas with multiple over-
lapping masks, the pixel values are assigned based on the
lowest confidence score among the box prompts that pro-
duced these overlapping masks. We employ this strategy
with the intention of lowering the false positive rate. Ul-
timately, the output of our S2M methods is a map where
pixel values ranging from O to 1. In this map, a pixel value
of 0 indicates ID areas, while any other values correspond
to OoD regions.

6.3. Evaluation Metrics

During the experimental process, we employed three eval-
uation metrics. The first metric, IoU, is used to assess the
accuracy of OoD object detection at a specific threshold.
However, since IoU does not reflect the robustness of dif-
ferent methods to threshold selection, we introduce the sec-
ond metric AuloU. AuloU provides a comprehensive mea-
sure of the model’s accuracy in detecting OoD masks across
various threshold levels, reflecting the ease of selecting the
most suitable threshold. A higher AuloU score indicates
greater ease in selecting the optimal threshold. The third
metric, mean F1 score, which takes into account both preci-
sion and recall, thus providing a more holistic assessment of
the prediction results. Across all the three metrics, the pro-
posed S2M outperforms the state-of-the-art OoD detection
methods with a large margin.

IoU is a widely used evaluation metric in semantic segmen-
tation. It is employed to assess the accuracy of the model in
detecting OoD objects in comparison with the given labels.
In this study, we ensure that for all methods which produce
anomaly scores, the reported IoU represents the best IoU
achieved by the optimal threshold on the specific dataset.
For the proposed S2M, the reported IoU is calculated with-
out the need for a threshold. During the computation pro-



cess, we utilized all produced box prompts, obtaining the
IoU by taking the intersection of the masks generated from
these prompts.

The average IoU of our S2M method is at least 7.52%
higher than the other methods listed in Table 1. This demon-
strates that our method not only outperforms mainstream
methods but also achieves superior performance without the
necessity of a threshold. This result can be visualized in
the Fig. 10. S2M achieves the highest IoU on the SMIYC
validation dataset without a threshold. This indicates that
our S2M method is more suitable for real-world application
scenarios.

AuloU. Area under IoU curve (AuloU) is calculated by the
area under the IoU curve with different thresholds. Here we
define th as the threshold. TPy, F P, F Ny, represent
the pixel numbers of True Positives, False Positives, and
False Negatives when the threshold is th. True Positives
(TP) are pixels correctly identified as OoD, False Positives
(FP) are in-distribution pixels incorrectly identified as OoD,
and False Negatives (FN) are OoD pixels that are not iden-
tified as such. With the above definitions, AuloU can be
computed as,
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where n is the total number of steps and th is the smallest
threshold and th,, is the largest threshold. In our experi-
ments, we fixed the value of n at 100, set thg to 0, and
incrementally increased it to th,, = 0.99 with a step size
of 0.01. A straightforward interpretation of AuloU is the
area under the IoU curve as depicted in Fig. 10. A higher
AuloU signifies that the model achieves better overall re-
sults across various thresholds, indicating that it is easier
to obtain an appropriate threshold for the model. This is
important in real-world application scenarios where deter-
mining the optimal threshold is inherently challenging.

The average AuloU of our S2M method, as shown in Ta-
ble. 1, is 41.37% higher than that of RPL. This suggests
that RPL is sensitive to threshold selection. This perspec-
tive is also intuitively substantiated by observing the IoU
curves in Fig. 10. The IoU curve for RPL shows that only a
limited range of thresholds result in an IoU above 50%, sug-
gesting that RPL has a narrow range of thresholds where it
can achieve optimal performance. This finding highlights
the challenges RPL faces in determining an appropriate
threshold for optimal performance, a significant limitation
in practical applications where flexibility and adaptability in
threshold settings are crucial. In contrast, our S2M method
demonstrates superior performance in the accurate detec-
tion of OoD objects, working effectively without the need

for threshold selection, in contrast to the limitations faced
by RPL.

Mean F1. The mean F1 score is calculated as the average
of F1 scores obtained at various threshold levels. It is the
harmonic mean of precision and recall, used to measure the
accuracy and completeness of a model’s predictions for the
positive class. Precision, represent the precision when
threshold is th. With the above definitions, mean F1 can be
computed as,
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This metric is especially valuable in scenarios where an op-
timal threshold has not been pre-established. A high F1
score indicates that the model achieves a favorable balance
between precision and recall, suggesting it is proficient in
correctly classifying positive cases while minimizing the
number of false positives and false negatives. This implies
the model’s effectiveness in handling cases where both the
accuracy of the positive predictions and the completeness of
capturing all positive instances are critically important.

The average mean F1 of our S2M method on five datasets
in Table 1 is 35.64% higher than Synboost, which shows
the best performance in mean F1 among mainstream meth-
ods. This indicates that our S2M method excels in balancing
precision and recall, particularly in terms of accurately and
comprehensively predicting positive classes. Specifically,
the higher mean F1 score suggests that the S2M method is
more effective in reducing both false positives (incorrectly
marking negative instances as positive) and false negatives
(missing true positive instances), thereby surpassing other
mainstream methods in overall performance. This advan-
tage is crucial as it demonstrates the reliability and accuracy
of the S2M method across various application scenarios.

6.4. Details of Efficiency Analysis

When comparing our S2M-B, used in our main experi-
ments, with the RPL method, we observe that the total run-
ning time for S2M-B is only 0.059s longer than RPL, a
modest increase considering its additional capabilities. The
efficiency of S2M-B can be attributed to its dual-component
structure which has shown in Fig. 5. Firstly, it includes a
mainstream OoD detector that generates an anomaly mask.
Secondly, it features the SAM, which utilizes the original
image and a box prompt to create precise OoD masks. A
significant advantage of this setup is the efficiency in pro-
cessing time. The operation of SAM on the image can be
overlapped with the running time of the RPL, as these two
processes can be executed in parallel. Once the box prompts
are generated, they can be directly inputted into the decoder,
together with the processed original image, to produce the
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Figure 10. Anomaly score distribution and IoU curve. We magnify the confusion area as depicted in Figure (a), to provide a clearer and

more detailed view.

SMIYC anomaly SMIYC obstacle
Method AuloU IoU mean F1 AuloU IoU mean F1
RPL+CoroCL  22.26 68.80 31.55 3.85 28.66 5.72

S2M (FastSAM-s) 38.55 63.37 41.41 21.66 27.47 25.00
S2M (FastSAM-x) 60.58 81.09 64.18 20.53 24.08 23.27

Table 5. This table presents the accuracy measurements of S2M
utilizes FastSAM on SMIYC. It highlights the S2M method with
FastSAM, which utilizes anomaly scores from RPL+CoroCL as
inputs. The parameters of FastSAM-x is 68M and FastSAM-s is
11M.

final outcomes. Therefore, our method introduces minimal
latency overhead compared to the baseline RPL.

6.5. S2M with FastSAM

As a faster version of SAM that performs comparably, Fast-
SAM [51] can also be used as a promptable segmentation
model in our S2M. FastSAM offers two unique model sizes:
the compact and swifter FastSAM-s, based on YOLOvS8s
with an 11M model size, and the more extensive FastSAM-
X, based on YOLOv8x with a 68M model size. We lever-
age FastSAM as the segmentation model and conduct ex-
periments across all datasets using models trained with 2%
noise. From Table. 5, we can find that the FastSAM also
show an acceptable result on various metrics. S2M with
FastSAM-x performs better on SMIYC anomaly validation
dataset than RPL, with AuloU 38.32% higher, IoU 12.29%
higher and mean F1 32.63% higher than RPL method. And
the S2M with FastSAM-s performs better on SMIYC ob-
stacle validation dataset, with Aulou 17.81% higher and
mean F1 19.28% higher than RPL, but IoU 1.19% lower
than RPL. Here we use the IoU of RPL with the best perfor-
mance on the validation dataset. The running time of S2M
(FastSAM-s) and S2M (FastSAM-x) is shown in Table. 6.
Due to the fast encoder speed and parallel way of segmenta-

Methods RPL

0.2166

S2M (FastSAM-s)
0.2415

S2M (FastSAM-x)
0.2336

running time (s)

Table 6. In these time measurements, we have excluded the dat-
aloader aspect of the RPL model from our analysis, while includ-
ing the set image process of the FastSAM model for consideration
which run in a parallel way.

tion model, the running time of S2M (FastSAM-s) and S2M
(FastSAM-x) mainly influenced by the prompting process.
However, the performance of FastSAM is lower than SAM
with the same input. After visualization we found that SAM
shows a stronger robustness to noisy box prompts than Fast-
SAM. That is the reason that S2M with SAM performs bet-
ter than FastSAM.

6.6. S2M With Entropy Based Anomaly Score

The anomaly scores in our methods, derived from RPL,
have been computed using an energy-based approach. To
demonstrate the generalization capability of our method,
we have also conducted experiments using anomaly scores
calculated via an entropy-based method [6]. As previ-
ously mentioned, we employ RPL [32] to generate anomaly
scores for training images using an entropy-based method,
while maintaining all other settings unchanged. Given
that the range of entropy-based anomaly scores approx-
imately lies between O and 1, we amplify the anomaly
score of each pixel by a factor of 20 during training
and inference to facilitate the model’s ability to distin-
guish between in-distribution and out-of-distribution pixels.
The results of entropy-based anomaly score of RPL and
S2M based entropy anomaly score are shown in Table 7.
The table demonstrates that S2M, when utilizing anomaly
scores calculated via the entropy-based method, also ex-
hibits improved performance compared to using the original
anomaly scores.



Methods FS Static FS Lost&Found SMIYC-Anomaly SMIYC-Obstacle RoadAnomaly
‘AquU IoU mean Fl‘AquU IoU mean Fl‘AquU IoU mean Fl‘AquU IoU mean FI‘AquU IoU mean F1
RPL (Entropy)| 8.81 14.65 14.61 225 3.63 3.83 |30.03 47.02 4096 | 0.72 145 1.35 16.66 26.23 25.10

S2M (Entropy)| 67.48 72.18 73.81 | 28.19 33.17 34.86

40.11 55.67 50.80

6.08 42.17 8.25 | 25.14 30.87 3141

Table 7. RPL (Entropy) represent RPL+CoroCL methods with entropy-based anomaly score. S2M (Entropy) represent S2M with anomaly
score from RPL (Entropy). The S2M method demonstrates strong generalization capability, effectively detecting OoD objects even when

processing anomaly scores calculated using the entropy-based method.

Methods FS Static FS Lost&Found SMIYC-Anomaly SMIYC-Obstacle RoadAnomaly
AuloU IoU mean F1|AuloU IoU mean F1|AuloU IoU mean F1|AuloU IoU mean Fl‘AuIOU IoU mean F1
Mask2Anomaly| 6.00 11.60 10.57 | 0.68 1.57 1.29 |44.08 81.31 53.37 | 8.07 4241 11.90 |24.31 56.74 32.80
Mask2Anomaly*| 57.77 62.34 62.90 | 25.74 27.94 30.94 | 65.61 83.90 72.69 | 54.69 60.58 61.46 | 47.18 53.39 52.56
RbA| 3.28 8.07 5.99 045 152 086 |28.03 70.28 39.07 | 2.49 23.18 4.22 |16.43 5499 24.32
RbA*| 50.41 57.16 56.66 | 24.46 27.27 29.12 | 33.33 76.23 41.48 | 41.99 52.09 48.40 | 44.13 55.36 51.30

Table 8. Mask2Anomaly* and RbA* denote the application of our S2M methodology utilizing the anomaly scores from Mask2 Anomaly
and RbA, respectively. Mask2Anomaly and RbA experiments is conducted with the models provided by authors. The results indicate that

our method significantly improves the performance of stronger results.

SMIYC Anomaly SMIYC Obstacle
Method AuloU IoU meanF1 AuloU IoU meanF1
vanilla RPL 22.26 68.80 31.55 3.85 28.66 5.72

S2M (RPL w. PEBAL'’s generator) 59.78 73.85 68.41 13.96 29.41 20.24

Table 9. Compare the results of RPL and SAM with prompt gen-
erator trained on anomaly score from Pebal.

6.7. S2M with Advanced SOTA Methods

To demonstrate the general improvement capability of our
method, we conducted experiments using the anomaly
scores from Mask2Anomaly [40] and RbA [37]. These ex-
periments were carried out with the models provided by the
authors, applying our S2M based on their anomaly scores.
The results, shown in Table 8, indicate that our method con-
sistently enhances the performance.

6.8. Reuse Prompt Generator without Training

Results presented in Table 9 demonstrate that a prompt gen-
erator, when trained on PEBAL’s [46] anomaly scores and
evaluated on RPL [32], still achieves superior performance
compared to RPL. The initial training of PEBAL’s generator
utilized anomaly scores from PEBAL, which has different
domain of anomaly score from RPL. Applying PEBAL’s
generator directly on RPL’s anomaly scores, without any
modification, typically yields suboptimal results. In our ex-
periment, we scale up the anomaly score of RPL by a factor
of 20. This adjustment contributes to better performance.
The result suggests that our prompt generator can be effec-
tively used without the need for retraining.

6.9. Input Contains No OoD Objects

We test our S2M (RPL) method on Cityscapes validation
datasets, which comprises 600 images without OoD objects
and used as ID dataset during training. The result shows
that our prompt generator did not detect any box prompt in
all 600 images, indicating that S2M can effectively discern
images without OoD objects.

6.10. Visualizations of Segmentation Result

We visualize the OoD mask generated by our S2M methods
on Road Anomaly, Fishyscapes and SMIYC in Fig. 12, Fig.
13 and Fig. 14.

Validation on Road Anomaly demonstrates the precision of
S2M. Our method accurately detects OoD objects while en-
suring that ID objects are not mistakenly identified as OoD,
as shown in the first row of Fig. 12. S2M gives a precise
mask of horse and excludes the people nearby. S2M is also
capable of generating precise masks for multiple OoD ob-
jects, as demonstrated in the second and fourth rows.

Validation on the Fishyscapes dataset highlights the preci-
sion of S2M in detecting small anomalies. Our method ex-
cels in accurately identifying small OoD objects when the
anomaly scores are optimal, as illustrated in the first row of
Fig. 13. This capability is crucial for scenarios involving
diminutive and subtle anomalies. Furthermore, S2M effi-
ciently detects semi-transparent, synthetically created OoD
objects, showcasing its robustness and precision in complex
scenarios. This is effectively demonstrated in the fourth and
fifth rows, where S2M successfully delineates these chal-
lenging objects without compromising accuracy.



The SMIYC dataset exemplifies the efficacy of our ap-
proach in addressing the diverse and dynamic nature of road
obstacles. The comprehensive environment of SMIYC al-
lows for the evaluation of our method’s ability to detect a
wide range of OoD objects on roadways, from tiny to larger,
more conspicuous obstacles.



Original image Anomaly score

Figure 11. Visualization of training data.



S2M Result

Figure 12. Visualization of S2M on Road Anomaly validation set. In the annotated images, pixels colored gray represent OoD objects,
black pixels denote ID objects.



Original image Label S2M Result

Figure 13. Visualization of S2M on Fishyscapes validation set. In the annotated images, pixels colored gray represent OoD objects, black
pixels denote ID objects, and white pixels indicate regions to be ignored.



Original image Label S2M Result

Figure 14. Visualization of S2M on SMIYC validation set. In the annotated images, pixels colored orange represent OoD objects, white
pixels denote ID objects, and black pixels indicate regions to be ignored.
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