
Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation
(Supplementary Material)

Dong Zhao1, Shuang Wang1 B, Qi Zang1, Licheng Jiao1, Nicu Sebe2, Zhun Zhong3,4 B

1 School of Artificial Intelligence, Xidian University, Shaanxi, China
2 Department of Information Engineering and Computer Science, University of Trento, Italy

3 School of Computer Science and Information Engineering, Hefei University of Technology, China
4 School of Computer Science, University of Nottingham, NG8 1BB Nottingham, UK

1. Why using the inner optimization for the
teacher model.

Applying Bi-Level optimization to the same model (BL
on same) also works well, as shown in the table below.
We employ it in the student-teacher framework (S-T) for
two reasons. First, teachers obtained by Exponential Mov-
ing Average (EMA) often outperform student models [1,3],
providing more accurate pseudo-labels for students and pro-
moting the stability of self-training. Second, most existing
SFDA works are employed based on it, we keep this design
for a fair comparison.

BL on same BL on S-T BL on same + DTST BL on S-T + DTST

GTA → Cityscapes (CS) 55.1 55.6 57.5 58.1
Synthia → CS 53.4 54.1 54.7 55.4
CS → ACDC 47.7 48.1 48.9 49.6

GTA → BDD100k 47.1 47.8 48.7 49.5

2. Does S-T cause bias in bi-level optimization?
We supplement the ablations of querying strategies (Ta-

ble 5) on both implements in the below TABLE. It shows
that retrieving nearest neighbors (Qlayout + Qstyle) brings
significant improvements on both ’S-T model’ and ’same
model’ implementations. This verifies that domain factors
are the main factors causing bias in Bi-level optimization
instead of using S-T model.

BL on same model BL on S-T
Query method GTA → CS CS → ACDC GTA → CS CS → ACDC

Random 53.5 43.4 54.8 44.7
Qlayout 54.9 44.2 55.3 44.9
Qstyle 54.4 47.1 55.6 47.5

Qlayout +Qstyle 55.1 47.7 55.6 48.1

3. Whether using multiple inner loops with
multiple neighbors are useful?

In principle, using multi-step inner loops with multiple
neighbors will indeed lead to more stable gradient opti-

mization. However, the computational overhead of multi-
step optimization is too high and difficult to accept in ac-
tual training. We show (Table 1) that using “multi-step in-
ner loops” obtains very similar results as “one-step one”,
but significantly increases the training time. In addition,
we show that replacing our “retrieving nearest neighbors”
by “random neighbors” clearly reduces the performance for
“multi-step inner loops”. These results indicate that 1) one-
step inner loop is sufficient for our method and that 2) our
“retrieving nearest neighbors” is important and saves a lot
of training time compared to the “random one”. Therefore,
retrieving nearest neighbors is an effective way to eliminate
bi-level optimization bias under limited iterations and ac-
ceptable cost.

0-step 1-step 2-step 3-step random 3-step

Ours (mIoU %) 50.5 55.6 56.1 56.4 53.5
Training Time (hours) 12.5 18.4 36.7 70.5 70.1

Ours + DTST (mIoU %) 54.4 58.1 58.3 58.6 56.5
Training Time (hours) 13.1 20.5 40.9 80.5 79.9

Table 1. The impact of the number of inner loops on performance
and time-consuming in GTA → Cityscapes task.

4. Whether the estimated ω∗ in the current it-
eration can be used as initialization for the
next optimization? And is there any other
manner?

We further implement the predicted probabilities as ini-
tial values for ω. The Table below shows that using the
last ω∗ achieves largely lower results than ours and the
probability-based variant. The main reason is: ω measures
the status of the current pseudo-labels. When the model
optimizes that sample again, it has been updated multiple
times, so its pseudo-labels undergo significant changes. It
results in the last ω∗ not matching with the current pseudo-
labels at all.

1

Last ω All Ones (Ours) Probability

GTA → Cityscapes 52.1 55.6 55.2
Cityscapes → ACDC 45.1 48.1 47.7

5. Work on both CNN and Transformer.
In the table below, we add the results of using the Seg-

former [2], indicating that our method consistently im-
proves the performance on both CNN and Transformer.

Segformer

Source DTST Ours

GTA → Cityscapes 52.6 60.7 62.9
Cityscapes → ACDC 47.7 50.2 51.6
GTA → BDD100k 47.1 51.6 53.7

6. Detailed weather results on Cityscapes →
ACDC.

Fog Night Rain Snow mIoU

DTST [3] 56.1 32.1 46.7 46.9 45.4
SND 57.2 34.1 51.3 49.8 48.1

DTST+SND 60.1 34.5 53.6 51.6 49.6

References
[1] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer:

Improving network architectures and training strategies for
domain-adaptive semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9924–9935, 2022. 1

[2] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and effi-
cient design for semantic segmentation with transformers. Ad-
vances in Neural Information Processing Systems, 34:12077–
12090, 2021. 2

[3] Dong Zhao, Shuang Wang, Qi Zang, Dou Quan, Xiutiao Ye,
and Licheng Jiao. Towards better stability and adaptability:
Improve online self-training for model adaptation in semantic
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11733–
11743, 2023. 1, 2

	. Why using the inner optimization for the teacher model.
	. Does S-T cause bias in bi-level optimization?
	. Whether using multiple inner loops with multiple neighbors are useful?
	. Whether the estimated * in the current iteration can be used as initialization for the next optimization? And is there any other manner?
	. Work on both CNN and Transformer.
	. Detailed weather results on Cityscapes → ACDC.

