
Synergistic Global-space Camera and Human Reconstruction from Videos

Supplementary Material

In this document, we provide additional technical details,

more ablation studies, and more discussions. We refer the

readers to the accompanying webpage for video results.

7. SynCHMR Setting vs. Prior Work

We compare the setup of recent world-frame HMR methods

that handle dynamic cameras in Tab. 5. Methods that esti-

mate world-frame body parameters through learning-based

approaches often ignore the camera at test time [33, 52, 64].

On the other hand, optimization approaches need to esti-

mate the camera at test time to fit to the detected 2D joint

key points [15, 30, 36, 46, 62, 65], and we have discussed

the downsides of their camera estimation approaches in

Sec. 2 of the main paper. It is still worth noting that none of

these methods reconstruct dense scene point clouds, except

Liu et al. [36], who adopt COLMAP [47] for this purpose.

However, since COLMAP is not robust enough for in-the-

wild videos, they demonstrate results only on sequences ac-

quired in a controlled capture settings. In stark contrast,

SynCHMR is designed to work on casual videos. It does

not assume the scene is a ground plane as in [30, 62] or is

scanned a priori as in [13, 17]. It has a light-weight setup

but it reconstructs the most information – human meshes,

camera trajectory, and dense scene, all in one coherent

global space.

8. Training Objectives for SMPL Denoiser

We consider a simple linear layer for each prediction

head and parameterize Φ and θ predictions as quaternions.

Specifically, PΦ : R
D → R

4, Pθ : R
D → R

J×4,

Pβ : RD → R
10, and PΓ : RD → R

3, where J denotes

the number of joints. Then we apply direct supervision of

SMPL parameters to the predictions

LΦ = 1− ∥q(Φ)q(Φ∗)⊤∥1,

Lθ = 1− ∥q(θ)q(θ∗)⊤∥1,

Lβ = ∥β − β∗∥1,

LΓ = ∥Γ− Γ∗∥1,

where q(·) stands for the quaternion representations and su-

perscript ∗ denotes the ground truth. Following [9], we also

introduce a discriminator C to ensure the per-frame predic-

tions are valid

LC = ∥1− C(θ,β)∥22.

The parameters are first factorized into (i) body pose pa-

rameters, (ii) shape parameters, and (iii) per-part relative

rotations and classified by the discriminator to be fake (0)

or real (1). To account for human motion, we further super-

vise the velocities and accelerations of human joints

L
J̇
=

∥

∥

∥
∥J̇∥2 − ∥J̇∗∥2

∥

∥

∥

1
,

L
J̈
=

∥

∥

∥
∥J̈∥2 − ∥J̈∗∥2

∥

∥

∥

1
,

where J are SMPL regressed joint locations.

9. SLAM Evaluation

Qualitative ablation study. In Tab. 3 of the main paper

we quantitatively analyze the contribution of each design

choice in our human-aware SLAM; here we provide visual

examples. In Fig. 6, we show the results where we grad-

ually add each design choice as stronger priors to the na-

tive visual SLAM. Merely using RGB inputs in Fig. 6(a),

naive DROID-SLAM [54] fails in capturing the geometry

structure of the scene. This results in a back-folded corri-

dor, which is far from reasonable. The dynamic human also

confuses the SLAM model, leading to a messy human point

cloud in the center and everything else surrounding it in a

circular shape. Masking out the human in Fig. 6(b) only

removes the messy human point cloud but still produces a

broken geometry since the depth ambiguity remains. An ex-

tra estimated depth channel in Fig. 6(c)(d) helps to resolve

the depth ambiguity and correct the scene geometry. How-

ever, as we filter out points with epipolar inconsistency, the

resulting point cloud is rather sparse. This indicates depth

estimation with ZoeDepth [2] does not guarantee each point

has a consistent location across different frames, and SLAM

fails to correct this error. Finally, our Human-aware Metric

SLAM in Fig. 6(e) is able to output a dense point cloud.

This reflects the success in finding more points with consis-

tent 3D locations. As the scene reconstruction depends on

camera pose estimation in SLAM, our pipeline potentially

produces more accurate camera poses.

Results on TUM-RGBD dataset. Tab. 3 of the main pa-

per considers HMR datasets that provide ground truth cam-

era trajectories. Here, we report the results on a common

SLAM benchmark TUM-RGBD [51]. Since it does not

contain humans in the scene, we can only apply our adapted

video-consistent ZoeDepth [2], namely ZoeDepth+, with-

out calibrating the scales. In Tab. 6, we see that this depth-

augmented version yields an average lower error than the

original DROID-SLAM. This suggests that despite the un-

known scale, estimated monocular depth still provides prior

information to better reason about camera trajectories. One

can see this as a byproduct of SynCHMR.



Methods Test-time Camera Estimation Test-time Scene Representation World-frame SMPL Params. Estimation

Yu et al. [64] no camera estimation manually created shape primitives RL-based

TRACE [52] no camera estimation no scene feed-forward

D&D [33] estimated acceleration and angular velocity ground plane feed-forward

Liu et al. [36] COLMAP [47] dense point cloud optimization

GLAMR [65]
difference between the root transformations

ground plane optimization
in the camera space and world space

SmartMocap [46] jointly solved with body params.; target: only body kpts. no scene optimization

BodySLAM [15] jointly solved with body params. no scene optimization

PACE [30] target: scene kpts and body kpts ground plane optimization

SLAHMR [62] DROID-SLAM [54] where humans are not excluded ground plane optimization

SynCHMR (ours) human-aware metric SLAM (Sec. 3.2) dense point cloud scene-aware SMPL denoising (Sec. 3.3)

Table 5. Comparison of methods that reconstruct humans in a global space from a video filmed by a dynamic camera.
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Figure 6. Qualitative comparisons of the parkour sequence from DAVIS [42]. (a) naive DROID-SLAM [54] reconstructed point

cloud with RGB input; (b) DROID-SLAM reconstructed point cloud with RGB input, where the foreground humans are masked out by an

instance segmentation method Mask2Former [4]; (c) DROID-SLAM reconstructed point cloud with RGB-D input, where the depth channel

is from ZoeDepth [2] estimations, the same below; (d) DROID-SLAM reconstructed point cloud with RGB-D and instance segmentation

mask inputs (e) our proposed Human-aware Metric SLAM reconstructed point cloud. Please see the webpage for video results.



RGB Depth Mask 360 desk desk2 floor plant room rpy teddy xyz avg

✓ ✗ ✗ 162.3 75.1 682.8 54.2 257.7 930.5 40.4 480.0 16.4 340.2

✓ ZoeDepth+ ✗ 101.3 153.9 75.6 817.4 219.4 96.3 32.6 201.2 21.8 223.4

Table 6. Comparison between native DROID-SLAM (top) and our depth-augmented version (bottom) on TUM-RGBD [51].
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Figure 7. Percentage of MPJPEs reduced by Scene-aware SMPL Denoiser in videos with varied attributes. The larger the better (↑).
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Figure 8. SLAHMR and SynCHMR human meshes integrated with static scenes. Video visualizations are included in the webpage.

10. HMR Evaluation

Qualitative comparison. In Fig. 8, we compare the esti-

mated human body meshes and scene point clouds of (a)

SLAHMR [62] and (b) our SynCHMR. We observe incom-

patible scales and structures in SLAHMR visualizations.

This can be the reason why SLAHMR uses a ground plane

instead of point clouds in the global refinement stage.

SMPL denoiser analysis. To better understand the im-

pact of our scene-aware SMPL denoiser, we annotate the

test set of EgoBody [69] with 5 attributes: frame trunca-

tion, scene occlusion, subject reappearing, camera motion,

and motion blur. In Fig. 7, we plot the amount of error

reduced by SMPL denoiser in these attributes. First, it con-

firms that the denoiser always brings improvement as there

are no negative numbers. Second, we identify truncation,

large camera motion, and motion blur as three primary sce-

narios where the denoiser helps greatly, as we see noticeable

upward trends for them. The underlying mechanism might

be our SMPL denoiser captures more comprehensive scene

information with dynamic scene modeling, which is benefi-

cial in these situations where single-frame observations are

bad and one needs to rely on cross-frame clues.

Runtime analysis. We report the runtime of our SynCHMR

along with state-of-the-art models in Tab. 2. Note that the

runtime for PACE [30] does not include camera-frame ini-

tialization with HybrIK [32]. To integrate per-frame hu-

man bodies into a smooth motion, SLAHMR [62] employs

a HuMoR-like motion prior, which is slow due to its auto-

regressive nature. PACE [30] improves this by proposing

a parallel motion prior. Similarly, while adding in scene

awareness, our feed-forward SMPL Denoiser also benefits

from the parallel inference of the Transformer architecture.
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