Taming Self-Training for Open-Vocabulary Object Detection

Supplementary Material

This document is supplementary to the main paper as,

e Sect. A.1 elaborates how to train a detector for open-
vocabulary object detection (OVD) without an external
RPN, which is used in “External RPN” of Sect. 4.3 in
the main paper.

* Sect. A.2 shows the quality of pseudo labels (PLs) from
the initial teacher and how to improve initial PLs for
Sect. 3.1.

* Sect. A.3 elaborates the exact iterations when we update
the teacher model for “The number of updates to the
teacher model.” of Sect. 4.3.

» Sect. A.4 shows the performance of our method with dif-
ferent initial weights.

e Sect. B.1 compares the proposed SAS-Det and visual
grounding methods.

¢ Sect. B.2 shows how well SAS-Det preserves knowledge
learned in the pretraining.

» Sect. B.3 provides extra ablation studies on LVIS.

* Sect. B.4 explores stronger external RPNs for SAS-Det.

» Sect. B.5 explores to use external PLs at the beginning of
self-training

e Sect. C.1 visualizes good and failure cases of PLs.

e Sect. C.2 visualizes good and failure cases of our OVD
detector.

* Sect. D discusses some limitations of this work and po-
tential solutions.

A. Extra Details for The Main Paper
A.1. Our detector for OVD without an external RPN

This section explains how we train a detector without an
external RPN. This approach is compared with the baseline
in paragraph “External RPN” of Sect. 4.3. As shown in
Fig. 1, we divide the training into two stages: (a) In the
first stage, we put a RPN box head on top of a pretrained
but frozen CLIP image encoder and only train the box head
with a box loss. The RPN box head outputs region pro-
posals with objectness scores. The box loss consists of a
foreground classification term and a box regression term.
(b) In the second stage, the RPN box head and a detection
head are built on the same CLIP image encoder. No mod-
ules are frozen. The whole model is trained the same way as
baseline in the main paper with online pseudo labels from a
teacher model.

Table 1 provides the performance of the first and the sec-
ond training stages. We evaluate the model of the 1st stage
by directly classifying region proposals with text embed-
dings. The model of the 1st stage can be regarded as the ini-
tial teacher of the 2nd stage. It achieves similar performance

as the initial teacher of baseline, which indicates that initial
PLs of baseline and the 2nd stage share similar qualities.
However, baseline outperforms the 2nd stage’s model on
both base and novel categories. Such results clearly demon-
strate that an external RPN is important to our detector and
training.

A.2. Improving initial pseudo labels with RPN
scores

In the self-training process, we initialize the teacher model
with pretrained CLIP weights to generate PLs. However,
the initial teacher cannot provide high quality PLs because
CLIP is weak at localizing objects and has poor zero-shot
detection ability [5, 14]. Similar to VL-PLM [14], we av-
erage the objectness scores from the external RPN with the
prediction scores from the teacher model. Assuming sRPN
is the objectness score of the i-th region proposal, the av-
eraged prediction score is p; . = (s8PN + p; .)/2 where ¢
refers to the c-th category. Table 2 provides the quantitative
results for whether or not to use the RPN fusion. As shown,
without the fusion, the quality of PLs significantly drops.

A.3. When to update the teacher model.

In this section, we discuss the timing of updates to the
teacher model during training. We trained our detectors
with different times of updates to teacher models and pro-
vides the exact iterations when we update the teacher model
for COCO-OVD in Table 3. Generally, we consider the
learning rate schedule and distribute updates as evenly as
possible during training. As shown in Table 3, too many up-
dates, e.g., 8 or 4 updates, lead to performance drops mainly
due to the following. First, similar as the aforementioned
EMA update, too many updates change the distribution of
PLs too often and make the training unstable. Second, the
more updates, the earlier an update happens. However, the
student model is not well trained at the early stage of the
training and thus is not good enough to update the teacher.
Table 3 shows that 2 and 3 updates achieve similar perfor-
mance. But we set 3 updates as default to include as many
updates as possible, considering that the only overhead of
our update is to copy the weights from the student to the
teacher. For LVIS-OVD, we find that a later update helps
and only conduct the update when the learning rate changes.
For the 2 training setup, the teacher is updated at 120k and
160k iterations.

A.4. Initial weights.

We use CLIP weights from RegionCLIP [15] to initialize
SAS-Det. However, we noticed that RegionCLIP’s pretrain-
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Figure 1. Two stage training for an OVD detector without an external RPN. (a) In the first stage, only RPN box head is trained. Text
embeddings are used for classification at inference time. (b) In the second stage, no modules are frozen.

Models APRgvel  APYise APg Method APEgUel (COCO) AP, (LVIS)
First stage (no external RPN) 10.5 12.7 12.1 w/o RPN scores 3.8 1.9
Second stage (no external RPN) 254 534 46.1 w/ RPN scores 11.9 9.1
Initial teacher of baseline (w/ an external RPN) 11.9 - -

baseline (w/ an external RPN) 314 55.7 494 Table 2. The quality of PLs generated by the initial

Table 1. Performance of OVD detectors without an external RPN.

# Updates Iterations to update ~ APZSVe!
8 Every 1k iterations 27.6
4 Every 2k iterations 30.6
3 (baseline) 4k,6k,8k 314
2 4k,8k 31.6
1 Sk 30.9
0 (No update) N/A 29.6

Table 3. Iterations to update the teacher model for different num-
ber of updates on COCO-OVD. The updates are usually conducted
at 6k and 8k iterations when the learning rate decreases.

ing includes LVIS base boxes that may include boxes for
novel categories of COCO. To avoid potential data leakage,
for our experiments on COCO-OVD, we followed Region-
CLIP’s procedure to finetune CLIP with COCO base boxes
only. Besides, On COCO-OVD, we report results with Soft
NMS [1] as RegionCLIP [15] did.

Table 4 compares original CLIP weights with Region-
CLIP weights as the initialization of baseline. As shown,
initialized with either of them, the detectors achieve simi-
lar performance on novel categories on both the COCO and
LVIS datasets. This is probably because our finetuning with
PLs closes the gap between CLIP’s and RegionCLIP’s pre-
training. Since RegionCLIP does not benefit our method,
it is still fair to compare SAS-Det with other methods that
uses the original CLIP. Table 4 also shows that initializa-

model w/ or w/o the RPN fusion on novel categories
of the COCO and LVIS datasets.

tion with RegionCLIP improves the performance on base
categories. Since RegionCLIP adopts the boxes of base cat-
egories in its pretraining, it actually provides longer training
on base categories. We attribute the improvement on base
categories to the longer training.

B. Additional Experiments
B.1. Comparison with visual grounding models

There are some recent studies [2, 7, 9] focusing on large-
scale pretraining for visual grounding where text phrases
in a whole caption are aligned with objects. They usu-
ally train their models with multiple datasets, including
detection data, visual grounding data [9], and image-text
pairs. Visual grounding data requires the association be-
tween each box and each specific text phrase, which is much
more expensive than detection annotations. The datasets
GoldG+ and GoldG, introduced in [9],are two widely used
Visual grounding datasets. GoldG+ contains more than
0.8M human-annotated gold grounding data curated by
MDETR [7], including Flickr30K [10], VG Caption [8],
GQA [6], and RefCOCO [13]. GoldG removes RefCOCO
from GoldG+. Image-text pairs are usually from CC [12]
and LocNar [11].

Table 5 compares our method with MDETR [7],
GLIP [9] and X-DETR [2] on LVIS minival that contains
5k images. As shown, our detector with RN50x4 as the
backbone achieves the leading performance on rare cate-



Initial weights ‘ APgvel

COCO-OVD

LVIS-OVD

ApLese  Apgll | AP, AP. AP; AP
From original CLIP 31.1 535 47.7 19.6 236 306 256
From RegionCLIP pretraining 314 55.7 494 | 19.8 253 315 268

Table 4. Performance of baseline using different pretrained weights as initialization.

Method Training Data Backbone Detector ‘ AP, AP. APy AP
MDETR | LVIS, GoldG+ RNI101 DETR [3] 74 227 250 225
GLIP 0365, GoldG, Cap4M Swin-T DyHead [4] 20.8 214 31.0 260
X-DETR | LVIS, GoldG+, CC, LocNar RN101 Def DETR [16] | 24.7 346 351 34.0
Ours LVIS Base RN50-C4 FasterRCNN 209 26.1 31.6 274
Ours LVIS Base RN50x4-C4  FasterRCNN 273 307 350 318

Table 5. Comparison with visual grounding methods on LVIS minival. Our method adopts pretrained CLIP model that is supervised with
image-text pairs automatically collected from the Internet. Reference for methods: MDETR [7], GLIP [9], X-DETR [2]

gories without using any annotations of those categories.
By contrast, the other three methods employ the costly vi-
sual grounding data. MDETR [7] and X-DETR [2] even
adopt the ground truth of rare categories but cannot out-
perform our method. Such results further demonstrate the
effectivenss of the proposed SAS-Det.

B.2. Preserving the knowledge from the pretraining

In this section, we explore if models after our finetuning
generalizes as well as pretrained models. If so, our fine-
tuning preserves the knowledge learned in the pretraining.
Specifically, we evaluated the proposed SAS-Det and base-
line, which are trained on COCO-OVD with 65 concepts,
on LVIS with 1203 concepts. Then, we compare them with
the pretrained models and report the results in Table 6. As
shown, though finetuned with limited concepts, SAS-Det
and baseline achieve similar or better performance as pre-
trained models on rare categories of LVIS. Note that those
categories do not appear during finetuning. This indicates
that the knowledge learned in the pretraining is successfully
preserved in our finetuning. We attribute the improvement
on common and frequent categories to the fact that finetun-
ing adapts CLIP to OVD and thus the models learn how to
better handle instance-level detection instead of image-level
classification that CLIP is pretrained for.

B.3. Ablation studies on LVIS

In this section, we provide ablation studies on LVIS, which
are similar as what we did on COCO. Except trained on
LVIS-OVD, the baseline model LVIS baseline is the same
as baseline in the main paper. As shown in Table 7, we
have consistent observations on LVIS as on COCO. First,
based on the results of LVIS baseline and (1)’s, it is bene-
ficial to remove noisy pseudo boxes from finetuning. Sec-
ond, (3)’s outperforms both LVIS baseline and (2)’s, which

Method AP, AP. APy AP
Original CLIP 8.7 6.7 4.0 6.0
RegionCLIP pretraining 9.7 7.1 4.3 6.4
baseline 9.2 9.7 9.0 9.4
SAS-Det (Ours) 131 105 99 107

Table 6. Preserving the knowledge from the pretraining. Models
are trained on COCO-OVD and evaluated on the LVIS validation
set. Most LVIS categories are unseen during training.

demonstrates that the proposed SAF head helps. The im-
provement probably comes from the fact that the SAF head
avoids noisy pseudo boxes as supervision and incorporates
a fusion from different branches.

B.4. Inference with different RPNs

The proposed SAS-Det leverages an external RPN to get
region proposals, and thus it is open to other RPNs without
any further finetuning. As shown in Table 8, our model is
evaluated together with several RPN that are trained with
different data. Based on those results, we have several
findings. First, the model is only trained with (4)’s RPN
but achieve similar or better performance with other RPNs.
This indicates that our model does not rely on the specific
RPN that is used in the training, and it is open to differ-
ent RPNs. Second, (4)’s performance is close to others on
novel categories, but its RPN is trained without any boxes
of novel categories. This demonstrates that the RPN trained
on base categories generalizes to novel ones.

B.5. Using external PLs at the beginning

At the beginning of self-training, our PLs are not as good
as VL-PLM’s [14], but our training pipeline allows us to
leverage external high quality PLs before the first update



Ablation

AP, AP. APy AP

LVIS baseline

(1) Use noisy pseudo boxes to train box regression
(2) No pseudo labels, train with base data only
(3) SAF head, fuse the open- and the closed-branches

19.8 253 315 2638
(-4.5) 153 240 31.1 252
(-3.1)16.7 270 330 276
(+1.1)209 26.1 316 274

Table 7. Ablation studies to analyze the effect of components of SAS-Det on LVIS-OVD.

Training boxes for RPNs APZgvel  ApLase AP Method APpevel  Apbuse  Apall
(4) COCO Base (48 categories) 314 55.7 baseline 31.4 55.7 49 .4
(5) COCO Base + Novel (65 categories) 32.7 55.7 baseline + VL-PLM’s PLs 33.5 55.9 50.1
(6) COCO (80 categories) 329 55.7

(7) LVIS Base (866 categories) 329 55.2 Table 9. Using PLs of VL-PLM [14] in our self-training.

Table 8. Evaluations with different RPNs on COCO-OVD.

to the teacher. To demonstrate this, we trained baseline on
COCO-0OVD using VL-PLM’s PLs before the first update.
As shown in Table 9, with VL-PLM’s PLs, our model im-
proves from 31.4 to 33.5 for novel categories.

C. Qualitative Results
C.1. Visualizations of pseudo labels

Figure 2 provides failure cases of our final PLs (after all
updates) on the COCO dataset. We find two major types
of failures. (a) Redundant boxes. In this case, one object
has multiple predictions that are overlapped with each other.
Those overlapped PLs indicate that the pseudo boxes are ex-
tremely noisy and cannot be improved by a simple thresh-
olding based on classification confidences. Thus, it is neces-
sary to handle the noise in pseudo boxes separately. We be-
lieve that redundant PLs are caused by the poor localization
ability of CLIP that provides noisy initial PLs. Though our
finetuning improve the localization ability to some extent,
how to further improve this ability is still challenging and
requires future research. (b) Wrong categories. We find the
teacher model tends to classify every object into given con-
cepts and generates PLs with wrong categories. Fortunately,
there are usually some connections or similarities between
the detected objects and the wrong categories. OVD em-
ploys text embeddings as classifiers, and text embeddings
of related concepts share similarities. For example, the em-
beddings of “bus” and “train” are close to each other. Thus,
though with wrong categories, those PLs may still provide
supervision for OVD to some extend.

Figure 3 visualizes more PLs with different times of up-
dates to the teacher model. All samples come from the
COCO dataset. As shown, PLs before the update are noisy.
Updates remove the noise and improve the quality of PLs.

Results on COCO-OVD are reported.

C.2. Visualizations of our detector for OVD

We visualize good cases and failure cases of the final de-
tector in Fig. 4 and Fig. 5, respectively. All samples come
from the COCO dataset, and only predictions of novel cate-
gories are provided. As shown in Fig. 4, our detector is able
to detect rare objects, e.g. a toy umbrella, a bus with rich
textures, and an elephant sculpture.

We find two major failure cases as shown in Fig. 5.
(a) Missing instances that usually happen in images with
a crowd of objects belonging to one category. In our view,
such cases are difficult for fully supervised object detection,
let alone OVD. (b) Redundant predictions. We believe this
is caused by using redundant PLs (see examples in Fig. 2a)
as supervision. Improving PLs will alleviate redundancy in
predictions.

D. Limitations

This work has the following limitations that can be fur-
ther investigated: (1) Compared to standard training, our
self-training involves an additional teacher model, which
requires more GPU memory. One possible solution to re-
duce the cost is to alternatively run the teacher and the stu-
dent. (2) Although much faster than prior methods, our
online pseudo labeling still induces overhead during train-
ing when millions of iterations are required. One possible
solution is to generate offline PLs each time the teacher
model is updated. (3) Although achieving good perfor-
mance, SAS-Det still suffers from two major failure cases,
which are visualized in Sect. C.2. The future work may ex-
plore stronger pretrained VLMs and better denoising steps
for solutions.
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Figure 5. Failure cases of the final detector on COCO. Only objects of novel categories are provided. Two major types: (a) Missing
instances. (b) Redundant predictions.
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