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7. Derivation of Shape Prior Regularizer
We elaborate on the detailed derivation of the two loss func-
tions Ls(v) and Lc(v) (local shape smoothness and global
shape closure).

Local shape smoothness. si is made up of several draw-
ing instructions, (si = {ci,1, ..., ci,nsi

}). If there is no turn
at the junction of two drawing instructions, the tangents of
these two drawing curves should be parallel. In Sec. 3.4,
we define pei,j as the ending point of ci,j . Additionally, l⃗si,j
is the starting tangent vector of ci,j and l⃗ei,j is the ending
tangent vector of ci,j . It is important to note that the ending
point of ci,j is the starting point of ci,j+1. The two tangent
vectors at the junction of two drawing instructions (ci,j and
ci,j+1) are l⃗ei,j and l⃗si,j+1.

We first calculate the tangent vectors l⃗si,j and l⃗ei,j . For
the instruction type ’m’,’l’ and ’z’, l⃗si,j and l⃗ei,j can be cal-
culated as Eq. (12). Since parameters of ’z’ share the same
value (share the same address) with ’m’ (in Sec. 3.1), l⃗ei,1
and l⃗si,nsi

is the two tangent vectors of the closure line.

l⃗ei,1 = pei,1 − pei,nsi
−1 (’m’), ti,1 = (−λ,−λ)

l⃗si,j = l⃗ei,j = pei,j − pei,j−1 (’l’), ti,j = (−λ, λ)

l⃗si,nsi
= pei,1 − pei,nsi

−1 (’z’), ti,nsi
= (λ, λ)

(12)
For the instruction type ’c’, the parametric equation for

the drawing curve is given by: p(t) = (1− t)3 · p0+3t(1−
t)2 · p1+3t2(1− t) · p2+ t3 · p3. We define the first control
point of ci,j as p1i,j and the second control point of ci,j as
p2i,j . In this case, l⃗si,j and l⃗ei,j can be calculated as Eq. (13).

l⃗si,j =
dp(t)

dt

∣∣∣∣
t=0

= 3p1i,j − 3pei,j−1

l⃗ei,j =
dp(t)

dt

∣∣∣∣
t=1

= 3pei,j − 3p2i,j

(13)

We calculate the angle between l⃗ei,j and l⃗si,j+1. When
this angle is less than the threshold α0, we set ωs

i,j = 1,
otherwise ωs

i,j = 0. We measure the local smoothness of v
through the loss function Ls(v) (8).

Global shape closure. We wish for the starting and end-
ing points of si to be as close as possible. The starting
point of si is the ending point of the ’m’ instruction pei,1,
and the ending point of si is the ending point of the in-
struction preceding the ’z’ instruction pei,nsi

−1. Given that
the parameters of ’z’ are identical in value and address to
those of ’m’ (pei,1 = pei,nsi

), it is sufficient to ensure that
pei,nsi

−1 and pei,nsi
are as close as possible. To address the

non-differentiable nature of recognizing the ’z’ instruction,
which poses a challenge for gradient propagation, we use an
approximate weight 1

1+ekc∥ti,j−(λ,λ)∥ to assign high weights
to ’z’ instructions and low weights elsewhere. We measure
the global closure of v through the loss function Lc(v) (9).

8. Ablation Study on Loss Functions
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Figure 7. Visualization of the instances generated by the methods
with ablation on loss functions. We utilize the same retrieved data
to sample from different methods.

Method w/o Li
t w/o Ls w/o Lc NG Lc Ours

FID↓ 58.42 6.21 6.14 6.20 6.09
VD↓ 0.0706 0.0122 0.0121 0.0125 0.0119

Table 3. Quantitative evaluation of methods with ablation on loss
functions.

We investigate the effectiveness of the loss functions
in Shape Prior Regularizer. The results are visually de-
picted in Fig. 7 and quantitatively assessed in Tab. 3. We
see that without Li

t to maintain the integrity of the overall
information, the system fails to generate a normal vector
graphic, and its FID and VD scores reach high values (i.e.,
w/o Li

t). The vector graphic generated without the local
smoothness loss function Ls(vt) exhibits irregularities in
shape caused by the non-smoothness of instruction curves
(i.e., w/o Ls). Omitting the global closure loss function
Lc(vt) leads to imperfections at the shape closure points
(i.e., w/o Lc). Additionally, we substitute the approximate
weight 1

1+ekc∥ti,j−(λ,λ)∥ with a non-gradient backpropagat-
ing weight (assigned as 1 at ’z’ instructions and 0 otherwise)
to demonstrate its effectiveness (i.e., NG Lc). Owing to the
Shape Prior Regularizer’s inability to learn recognition of
’z’ instructions during training, the points of two indepen-
dent shapes get close unexpectedly during generation.

9. More Visual Results
We showcase more vector graphics generated based on the
Icon dataset in Fig. 8 and the vector graphics generated
based on the Font dataset in Fig. 9. More interpolation re-
sults are shown in Fig. 10.



Figure 8. Generation results on the Icon dataset. Our method generates high-quality vector graphics with well-organized details.
Furthermore, the generated results demonstrate a diverse range of shapes and styles.



Figure 9. Generation results on the Font dataset. Our method generates high-quality vector graphics with well-organized details.
Furthermore, the generated results demonstrate a diverse range of shapes and styles.
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Figure 10. Visualization of interpolation results. Our method achieves smooth shape transition while retaining good visual quality.
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