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A. Detailed Loss Functions
We detail the loss functions for the training in this sec-
tion. For the labeled data, we directly adopt the cross en-
tropyH(·) to calculate the supervised loss Ls. For the unla-
beled data, we first follow FixMatch [18] to filter samples
with low-confidence pseudo label by a mask Mu(um) =
I(max(f(Aw(um))) > τ). Then, we can obtain Mh and
Ml, the masks of high and low entropy for selecting labeled
samples (xs

m, ysm) and unlabeled samples us
m in data mixing.

Given the mixed samples u′
m from CAMmix, we can obtain

four types of unsupervised loss (i.e. Lh
u, Ll

u, L
h
us , and Ll

us),
in which Lh

u, Ll
u and Ll

us are weighted by the entropy-based
class balanced weight ŝu to form the Lecb. Specifically, Lh

u

and Ll
u are supervised by the pseudo label of the original

unlabeled data qm, while Lh
us and Ll

us are supervised by the
ground truth of the sampled labeled data ysm and the pseudo
label of the sampled unlabeled data qsm, respectively. The
final loss function L is weighted by λ reflecting the propor-
tion of area occupied by original and sampled data as in
CutMix [23]. Detailed loss functions are as follows:

Ls =

B∑
n=1

H(f(Aw(xn)), yn)

Lh
u = ŝu

B∑
m=1

Mu(um)Mh(um)H(f(u′
m), qm)

Ll
u = ŝu

B∑
m=1

Mu(um)Ml(um)H(f(u′
m), qm)

Lh
us =

B∑
m=1

Mh(um)H(f(u′
m), ysm)

Ll
us = ŝu

B∑
m=1

Mu(u
s
m)Ml(um)H(f(u′

m), qsm)

L = Ls + λ(Lh
u + Ll

u) + (1− λ)(Lh
us + Ll

us)

(1)

B. Detailed Experimental Setup
In this section, we provide additional information about the
datasets and implementation details.
Datasets. We evaluate our method in three scenarios, i.e., 1)
the class distribution of labeled data is consistent with the
unlabeled data (γl = γu). 2) the labeled and unlabeled data
fail to share the same distribution (γl ̸= γu). 3) The test data
possesses an imbalanced class distribution.
• CIFAR10/100-LT CIFAR-10/100 [11] are originally class-

balanced datasets, each containing 500/5000 samples

Algorithm 1 Balanced and Entropy-based Mix (BEM)

Input: Labeled dataset X , unlabeled dataset U , model f ,
effective number of labeled data Ex

c , CAM threshold
τc, area threshold τa, balanced parameter α, number of
iterations T .

Require: Weak augmentation Aw, strong augmentation As.
1: for t = 1 to T do
2: {(xn, yn)}Bn=1 ← X , {um}Bm=1 ← U
3: Pseudo label qm ← argmax f(Aw(um))
4: {Update training status}
5: Update CBMB according to (xn, yn), (um, qm)
6: Update class-wise data quantity Ec via Eq. 2, 3
7: Update class-wise entropy ec via Eq. 5, 6
8: Update sampling probability ŝ, ŝu via Eq. 7
9: Update sample-wise entropy em, entropy masks Mh,

Ml and entropy selection threshold τe via Eq. 8, 9, 10
10: {Sampling}
11: {(xs

m, ysm)}Bm=1, {us
m}Bm=1 ← Sample labeled and

unlabeled data from CBMB following ŝ
12: {Selection and CamMix}
13: {u′

m}Bm=1, λ ← CamMix(As(um), Aw(x
s
m), ysm,

Aw(u
s
m), f ) get mixed data and loss weight following

Mh, Ml, τc and τa
14: {Compute losses}
15: Generate the mask of pseudo label Mu

16: Ls ←
∑B

n=1H(f(Aw(xn)), yn)

17: Lh
u ← ŝu

∑B
m=1 Mu(um)Mh(um)H(f(u′

m), qm)

18: Ll
u ← ŝu

∑B
m=1 Mu(um)Ml(um)H(f(u′

m), qm)

19: Lh
us ←

∑B
m=1 Mh(um)H(f(u′

m), ysm)

20: Ll
us ← ŝu

∑B
m=1 Mu(u

s
m)Ml(um)H(f(u′

m), qsm)
21: L = Ls + λ(Lh

u + Ll
u) + (1− λ)(Lh

us + Ll
us)

22: Update f based on ∇L using SGD
23: end for
24: return

across 10 and 100 classes respectively. All images are
32 × 32 in size. Following previous work [16], we sam-
ple the training data to create imbalanced versions of
the datasets. We employ different sampling ratios for la-
beled and unlabeled data to achieve various data distri-
butions, including γl = γu and γl ̸= γu scenarios. The
test set contains 10k samples with a balanced class dis-
tribution. The CIFAR dataset can be downloaded from
https://www.cs.toronto.edu/ kriz/cifar.html.

• STL10-LT The STL-10 [4] dataset consists of 5000 class-

https://www.cs.toronto.edu/~kriz/cifar.html


Algorithm 2 CamMix

Input: Strong augmentation of unlabeled data As(um),
weak augmentation of sampled labeled data Aw(x

s
m),

the label of sampled labeled data ysm, weak augmenta-
tion of sampled unlabeled data Aw(u

s
m), model f , high

entropy mask Mh, low entropy mask Ml, CAM thresh-
old τc, area threshold τa, functions in skimage label(·)
and regionprops(·), the function of CutMix Mix(·).

Output: Mixed data {u′
m}Bm=1, loss weight λ.

1: for m = 1 to B do
2: qsm ← argmax f(Aw(u

s
m))

3: CAMu
m ← GradCAM(Aw(u

s
m), qsm)

4: Su
m ← int(CAMu

m > τc)
5: Pu

m ← max(regionprops(label(Su
m))) get

largest connected region
6: if the area ratio of Pu

m < τa then
7: bboxu

m ← Random crop of Aw(u
s
m)

8: else
9: bboxu

m ← The bounding box of Pu
m

10: end if
11: bboxx

m ← Calculate the bounding box for
(Aw(x

s
m), ysm) using a similar method in steps 3-10.

12: u′
m ← Mix(As(um), Aw(x

s
m) or Aw(u

s
m)) follow-

ing bboxx
m, Mh(um), bboxu

m, Ml(um)
13: (1− λm)← The area ratio of bboxx

m or bboxu
m

14: end for
15: λ← The average of λm

16: return Mixed data {u′
m}Bm=1, loss weight λ

balanced labeled data and 1000k unlabeled data with
an unknown distribution. To make an imbalanced ver-
sion of the dataset, we only sample the labeled data,
while the distribution of unlabeled data naturally differs
from that of labeled data, i.e.,γl ̸= γu. All images are
96× 96 in size and the dataset can be downloaded from
https://cs.stanford.edu/ acoates/stl10/.

• ImageNet-127 ImageNet-127 [5] is naturally an imbal-
anced dataset, thus it doesn’t require any further process-
ing. Moreover, it has an imbalanced test set, which can
validate scenario 3). To conserve computation resources,
all images are down-sampled to 32 × 32 or 64 × 64 in
size and the dataset can be downloaded from https://image-
net.org/download-images.

Implementation details. Following previous training pro-
tocol [16], we conduct our experiments on CIFAR10-LT,
CIFAR100-LT and STL10-LT using Wide ResNet-28-2 [24],
and on ImageNet-127 using ResNet-50 [7]. We train the
model with a batch size of 64 for 250k iterations, with an
evaluation every 500 iterations. We use SGD with momen-
tum as our optimizer and adopt a cosine learning rate decay
strategy by setting the learning rate to ηcos( 7πt

16T ), where η
is the initial learning rate, t is the current iteration number

and T is the total number of iterations. We set the balance
parameter α = 0.5 on CIFAR10-LT, CIFAR100-LT and
STL10-LT, and set it to 0.2 on ImageNet-127. We set all
EMA update weights as λ = λd = λe = λτ = 0.999. The
CAM threshold τc and area threshold τa are set to 0.8 and
0.1, respectively. The epoch number for starting to estimate
the data quantity and entropy of unlabeled data is set to 5.
We designate the final block as the CAM layer. We adopt
Softmax(·) as the mapping function δ(·). Our experiments
are conducted on one NVIDIA Tesla V100 with the CentOS
7 system, using PyTorch 1.11.0 and Torchvision 0.12.0.

C. Pseudo-code for Our BEM Algorithm
We define the pseudo-code for our BEM and CamMix algo-
rithm in Alg. 1 and 2, respectively.

D. Additional Experiment Results
In this section, we conduct a series of additional experiments
to further demonstrate the effectiveness of our BEM.
More results with re-balancing methods when γl ̸= γu.
We present the results of combining with FixMatch and ACR
under γl ̸= γu setup in Tab. 2. As shown in Tab. 1, we further
combine our BEM with more re-balancing methods, includ-
ing LA and ABC. Without incorporating any re-balancing
method, BEM’s performance is weaker than DASO in some
settings, particularly in the reversed setting. After combining
two re-balancing methods, BEM outperforms DASO in al-
most all settings. Further integration with ACR achieves the
state-of-the-art results in all scenarios with an average 31.5%
performance gain. In summary, our method needs to com-
bine with re-balancing methods to enhance the re-balancing
ability in challenging scenarios, and it in turn complements
these methods.
More results on CIFAR100-LT. We also conduct exper-
iments on CIFAR100-LT under γl ̸= γu setup in Tab. 2.
Results show that our BEM outperforms DASO in almost
all settings. By integrating with ACR, we can achieve the
best results in all scenarios (32.7% accuracy gain). It further
demonstrates that the complementation of BEM can boost
the performance of most re-balancing methods.
Fine-grained results. In this experiment, we present the fine-
grained results in Tab. 3. We compare our BEM with DASO
and ACR in three settings. Our method surpasses DASO in
all scenarios and further enhances the state-of-the-art method
(ACR). In particular, our method significantly improves the
performance of few-shot classes at the cost of negligible drop
on head classes in the consistent setting. Moreover, in all
settings, our method shows a large improvement in medium
classes, which is brought by entropy-based learning.
BEM on balanced datasets. To verify the effect of our BEM
on balanced datasets, we conduct experiments on balanced
datasets with combinations of different SSL methods, in-

https://cs.stanford.edu/~acoates/stl10/
https://image-net.org/download-images
https://image-net.org/download-images


Table 1. Comparison of test accuracy with combinations of different baseline models under γl ̸= γu setup on CIFAR10-LT and STL10-LT.
The γl is fixed to 100 for CIFAR10-LT, and the γl is set to 10 and 20 for STL10-LT. The best results for each diversion are in bold.

CIFAR10-LT(γl ̸= γu) STL10-LT(γu = N/A)
γu = 1(uniform) γu = 1/100(reversed) γl = 10 γl = 20

N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 150 N1 = 450 N1 = 150 N1 = 450
Algorithm M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M = 100k M = 100k M = 100k M = 100k

FixMatch [18] 73.0±3.81 81.5±1.15 62.5±0.94 71.8±1.70 56.1±2.32 72.4±0.71 47.6±4.87 64.0±2.27
w/DASO [16] 86.6±0.84 88.8±0.59 71.0 ±0.95 80.3±0.65 70.0±1.19 78.4±0.80 65.7±1.78 75.3±0.44
w/BEM(Ours) 86.8±0.47 89.1±0.75 70.0±1.72 79.1±0.77 68.3±1.15 81.2±1.42 61.6±0.98 76.0±1.51

w/LA [15]+DASO [16] 84.6±2.04 86.8±0.76 72.6 ±0.38 78.5±1.31 72.7±1.45 79.7±0.44 66.8±0.62 75.7±0.50
w/LA [15]+BEM(Ours) 85.3±0.31 88.5±0.65 70.9±1.69 79.8±1.37 72.9±0.38 81.8±0.76 65.7±0.25 76.8±1.87

w/ABC [12]+DASO [16] 85.2±1.56 88.4±0.82 70.1±1.25 79.8±0.21 71.8±1.17 78.4±0.58 67.3±2.06 75.9±0.43
w/ABC [12]+BEM(Ours) 85.9±0.33 89.0±0.67 71.2±0.58 80.1±0.96 73.1±1.68 81.4±1.29 66.4±1.93 76.7±1.12

w/ACR [21] 92.1±0.18 93.5±0.11 85.0±0.09 89.5±0.17 77.1±0.24 83.0±0.32 75.1±0.70 81.5±0.25
w/ACR [21]+w/BEM(Ours) 94.3±0.14 95.1±0.56 85.5±0.21 89.8±0.12 79.3±0.34 84.2±0.56 75.9±0.15 82.3±0.23

Table 2. Comparison of test accuracy with combinations of different
baseline models under γl ̸= γu setup on CIFAR100-LT. The γl is
fixed to 10. The best results for each diversion are in bold.

CIFAR100-LT(γl ̸= γu)
γu = 1(uniform) γu = 1/10(reversed)

N1 = 50 N1 = 150 N1 = 50 N1 = 150
Algorithm M1 = 400 M1 = 300 M1 = 400 M1 = 300

FixMatch [18] 45.5±0.71 58.1±0.72 44.2±0.43 57.3±0.19
w/DASO [16] 53.9±0.66 61.8±0.98 51.0±0.19 60.0±0.31
w/BEM(Ours) 54.8±0.55 63.6±0.91 50.8±0.25 60.7±0.12

w/LA [15]+DASO [16] 54.7±0.40 62.4±1.06 51.1±0.12 60.5±0.23
w/LA [15]+BEM(Ours) 56.5±0.43 64.1±0.87 51.7±0.20 61.3±0.17

w/ABC [12]+DASO [16] 53.4±0.53 62.4±0.61 51.2±0.19 60.8±0.39
w/ABC [12]+BEM(Ours) 55.2±0.35 64.7±0.87 51.1±0.10 61.4±0.29

w/ACR [21] 66.0±0.25 73.4±0.22 57.0±0.46 67.6±0.12
w/ACR [21]+BEM(Ours) 68.1±0.34 75.9±0.49 58.0±0.28 68.4±0.13

Table 3. Fine-grained results on CIFAR10-LT with N1 =
1500,M1 = 3000, γl = 100.

Consistent(γu = 100) Uniform(γu = 1) Reversed(γu = 1/100)

Algorithm Many Medium Few All Many Medium Few All Many Medium Few All

DASO 95.1 78.6 60.4 78.1 89.6 84.4 85.7 86.3 84.0 71.6 68.2 74.3
BEM 94.7 78.0 67.0 79.8 91.7 88.1 90.7 89.4 82.3 80.2 73.3 78.7
ACR 93.9 81.6 75.3 83.4 92.8 90.6 97.9 93.5 90.7 83.8 96.4 89.7
ACR+BEM 92.3 83.3 81.9 85.4 95.4 93.1 98.0 95.3 90.9 84.9 95.8 89.9

cluding MeanTeacher, FixMatch, FlexMatch and SoftMatch.
Specifically, we set α = 0, meaning that we only consider
the differences in class-wise uncertainty distribution. As
shown in Tab. 6, our BEM enhances the performance of all
baseline models, particularly the MeanTeacher, where our
method gains an average of 21.4%, 26.9% and 25.0% im-
provement for three datasets. This demonstrates the potential
of class-wise uncertainty re-balancing in enhancing model
performance for balanced datasets.

Table 4. Ablation study on different sampling strategies. EFF. de-
notes the effective number.

CBMB ESS EFF. C10 STL10
Random 72.1 65.0
Quantity-based ✓ ✓ 74.9 66.5
Entropy-based ✓ 74.4 65.9
w/o effective number ✓ ✓ 75.2 67.3
Ours ✓ ✓ ✓ 75.7 68.3

Table 5. Ablation study on updating strategies of entropy selection
threshold τe.

C10 STL10
Baseline 67.8 56.1
τe = 0.1 74.7 66.6
τe = 0.2 75.2 67.2
τe = 0.4 75.1 66.9
τe = 0.6 74.4 66.4
w/ ours 75.7 68.3

Ablation study on sampling strategies. To evaluate the
effect of our sampling strategy, we conduct a series of ex-
periments by replacing the sampling function. Results are
summarized in Tab. 4. Random sampling only improves per-
formance slightly. Then, we split the class-balanced entropy-
based sampling function and find that the results drop on
both datasets. Further, we replace the effective number with
the common number. Results indicate the effective number
more accurately measures the class distribution of datasets.
Ablation on the updating strategy of entropy threshold
τe. As shown in Tab. 5, we perform experiments to vali-
date the effect of the entropy threshold τe updating strategy.
When we filter the entropy mask with fixed thresholds, the



Table 6. Comparison of test accuracy on balanced datasets with combinations of different SSL methods, including MeanTeacher, FixMatch,
FlexMatch and SoftMatch.

CIFAR-10 CIFAR-100 STL-10

Algorithm 40 250 4000 400 2500 10000 40 1000

MeanTeacher[20] 29.81±1.60 62.54±3.30 91.90±0.21 18.89±1.44 54.83±1.06 68.25±0.23 28.28±1.45 66.10±1.37
w/BEM(Ours) 43.13±2.55 74.31±1.79 92.65±0.23 30.92±3.69 60.73±2.14 72.54±0.19 37.31±2.59 78.74±1.38

FixMatch [18] 92.53±0.28 95.14±0.05 95.79±0.08 53.58±0.82 72.97±0.16 77.80±0.12 64.03±4.14 93.75±0.33
w/BEM(Ours) 93.96±0.37 95.37±0.03 95.93±0.11 55.24±0.93 73.12±0.14 77.95±0.11 66.45±3.29 93.98±0.65

FlexMatch [26] 95.03±0.06 95.03±0.09 95.81±0.01 60.06±1.62 73.51±0.20 78.10±0.09 70.85±0.01 94.23±1.62
w/BEM(Ours) 95.08±0.09 95.21±0.04 95.98±0.01 60.83±0.98 73.94±0.18 78.72±0.11 72.11±0.03 94.39±1.54

SoftMatch [2] 95.09±0.12 95.18±0.09 95.96±0.02 62.90±0.77 73.34±0.25 77.97±0.03 78.58±3.48 94.27±0.24
w/BEM(Ours) 95.11±0.08 95.37±0.06 96.12±0.07 63.13±0.92 73.56±0.08 78.14±0.08 79.09±3.87 94.43±0.38

Table 7. Ablation study on α.

C10 STL10
1.0 74.7 67.0
0.7 75.5 67.3
0.5 75.7 68.3
0.3 74.4 68.5
0 73.8 67.5

Table 8. Ablation study on τc.

C10 STL10
0.9 73.0 65.8
0.8 75.7 68.3
0.6 74.4 67.3
0.4 71.5 64.6
0.2 69.3 61.3

performance decreases and becomes unstable. Our EMA
updating strategy achieves the best result, indicating that it
adaptively adjusts the threshold following the training status
of the model.
Ablation study on parameter α. As shown in Tab. 7, we
verify the effect of α to balance the effective number and en-
tropy in Eq. 7. Results show the best α on CIFAR10-LT and
STL10-LT are 0.5 and 0.3, respectively. The visualization of
sampling rate and class accuracy can be seen in Appendix E.
Ablation study on CAM threshold τc. In Tab. 8, we study
the effect of CAM threshold τc on selected region. Results
show that 0.8 is the best threshold on both datasets. It indi-
cates that the precise selection of relevant regions is more
advantageous for re-balancing long-tailed datasets.
Ablation study on the adding weight β. We conduct ex-
periments to test the impact of the adding weight β in the
equation ec = βeuc +(1−β)exc . The results in Tab. 9 indicate
that weight addition has minimal impact. So we remove this

Table 9. Ablation study on the adding weight β.

β C10 STL10
0.7 75.1 67.7
0.5 75.7 68.3
0.3 75.8 68.1
0.1 74.9 67.9

Table 10. More comparison with class-wise data mixing methods.

C10 STL10
FixMatch 67.8 56.1

w/UniMix [22] 72.9 66.0
w/MiSLAS [29] 73.4 66.2
w/Ours 75.7 68.3

Table 11. Comparison with AREA on supervised learning.

C10-LT C100-LT

γ 200 50 200 50
CE 65.7 74.8 34.8 43.9
AREA [3] 75.0 82.7 43.9 51.8
Ours 74.7 83.0 40.3 49.7

parameter to simplify the number of hyperparameters.
More comparison with class-wise data mixing methods.
We conduct additional experiments to compare our BEM
with other class-wise data mixing methods [22, 29]. The
results in Tab. 10 show that BEM outperforms them. We
infer that these class-wise mixup methods are limited in not
considering the uncertainty issue in LTSSL.
Comparison with AREA. We compare our BEM with
AREA [3], which is a fully supervised learning method
in long-tailed learning. Our BEM is different from AREA
in three aspects: 1) Motivation: AREA does not consider
class-wise uncertainty. It optimizes the re-weighting strat-



egy, which only focuses on data quantity, by exploring the
spanned space of each class and relations between samples.
While we propose to re-balance the class distribution of both
data quantity and uncertainty, which is more suitable for
LTSSL. 2) Task: AREA focuses only on the class imbalance
issue in the supervised learning diagram. While our method
is specifically designed for LTSSL to further address the
issue of uncertainty in unlabeled sample predictions, which
can not be achieved by AREA. We also apply our BEM to
supervised learning. Tab. 11 shows that BEM is competitive
with AREA, demonstrating its flexibility and superiority. 3)
Design: AREA is based on the re-weighting strategy, using
the effective area as class-wise weights in cross-entropy loss.
While BEM is primarily based on re-sampling, where we use
class-wise data quantity and uncertainty as sampling criteria
for CamMix.

E. Additional Visualization Analysis
In this section, we provide additional visualization analysis
to better understand our approach.
Visualization of confusion matrices on test set. We com-
pare the confusion matrices of the prediction from the test
set. We conduct experiments on CIFAR10-LT in the con-
sistent scenario and apply our BEM to FixMatch and ACR,
respectively. As shown in Fig. 1, the prediction of FixMatch
is significantly biased towards the head classes, resulting
in poor performance of the tail classes. Our method greatly
alleviates this bias, improving both the tail performance and
overall performance. ACR achieves good results in various
classes, and our method further improves the performance of
the tail classes, demonstrating the superiority and versatility
of our method.
Visualization of precision and recall on the test set. We
analyze the precision and recall on the test set to further
verify the effect of our BEM. As shown in Fig. 2, we apply
our method to FixMatch and ACR. The results show that the
recall of tail classes achieves significant gains by combining
our BEM with both models.
Visualization of train curves and test accuracy class dis-
tribution. We further assess the effect of BEM on FixMatch
and ACR by plotting training curves and class-wise test accu-
racy. As shown in Fig. 3(a), the low entropy ratio increases,
suggesting a large fraction of unlabeled data is used in the
mixing as the training state becomes stable. As shown in
Fig. 3(b), our method greatly improves the tail class perfor-
mance of FixMatch and ACR.
Visualization of the class distribution of sampling rate
and accuracy under different α. We present the ablation
study on α in Tab. 7. In addition, we further visualize the
class distribution of sampling rate and accuracy under vari-
ous α. Fig. 4 (a) shows that as α increases, the sampling rate
of tail classes improves. When α is small, the sampling func-
tion pays attention not only to tail classes but also to middle

(a) FixMatch (Avg Acc.:71.0 ) (b) FixMatch w/ BEM (Avg Acc.:77.6 )

(c) ACR (Avg Acc.:81.3 ) (d) ACR w/ BEM (Avg Acc.:83.5 )

Figure 1. The confusion matrices of the test set on CIFAR10-LT
under γl = γu setup.
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(d) ACR w/BEM

Figure 2. The precision and recall of the test set on CIFAR10-LT
under γl = γu setup.

classes with high uncertainty. In Fig. 4 (b), we can see that
when α = 0.5, both the tail class and the middle class with
high uncertainty have relatively high accuracy, indicating it
achieves the balance of data quantity and uncertainty.
More visualization of data mixing. We provide the inter-
mediate images of the data mixing on STL10 in Fig. 5. To
further illustrate the effectiveness of our CamMix, we also
present additional visualization results on CIFAR10 in Fig. 5.
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Figure 3. (a): Train curves for tail low entropy ratio and tail class
accuracy. (b): Class distribution of test accuracy over different
methods. C0 and C9 are the head and tail classes, respectively.
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(a) Class-wise sampling rate
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(b) Class-wise test accuracy

Figure 4. Class distribution of sampling rate and test accuracy under
various α on CIFAR10-LT (γl = γu = 100) using FixMatch.

We select three images for each target size. Based on the
results from the two datasets, we can draw the following con-
clusions: 1) CutMix has a high degree of randomness and
often selects the context region. 2) The localization ability of
SaliencyMix needs to be optimized. The selection region is
not precise and tends to choose numerous redundant areas. 3)
CamMix greatly improves the localization ability due to the
accuracy of CAM and excludes irrelevant redundant areas
as τc value decreases.
More visualization of t-SNE As displayed in Fig. 4, we
show the t-SNE of learning representations from the test
data on CIFAR10-LT. We further conduct experiments on
STL10-LT to visualize the learning representations when
γl ̸= γu. Results in Fig. 6 show that our method generates
clearer classification boundaries for representations when
γl ̸= γu. Specially, the classification ability of FixMatch is
relatively poor, with most clusters gathered together. Our
method greatly enhances its classification ability.

F. Limitation and Future Work
A potential limitation is that the proposed BEM is restricted
by only exploring the data mixing for the LTSSL classifi-
cation task, while ignoring its further application for other
vision tasks, such as object detection [1, 6, 30], semantic
segmentation [8, 17, 19, 28] and others [13, 27]. It is worth
noting that the application of semi-supervised learning for
long-tailed objection detection [14, 25] and semantic seg-
mentation [9, 10] is not trivial but much harder than the

Input CAM 𝜏! = 0.4 𝜏! = 0.6 𝜏! = 0.8 CutMix SaliencyMix

CamMix (Ours)

Big
M
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all

Figure 5. The visualization of data mixing process for CutMix,
SaliencyMix, and CamMix on CIFAR10-LT. The red box indicates
the image area selected by data mixing.
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(a) FixMatch

Classification boundaries

(b) FixMatch w/BEM
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ca
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Figure 6. Comparison of t-SNE visualization with combinations of
FixMatch and ACR on the test set of STL10-LT when γl ̸= γu.

pure classification task, as it requires further predict object
location or semantic mask. In the future, we will extend our
BEM to more complex vision tasks to further demonstrate
its effectiveness and adaptability.
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