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6. PRL-based Method Derivation
Consider source graph G1 = {V1, E1} and target graph
G2 = {V2, E2}. Since the compatibility matrices/tensors are
non-negative in graph matching, the original compatibility
coefficient between (i, l) ∈ E1 and (j,m) ∈ E2, denoted
as ril(j,m) ∈ [−1, 1] in [13], is updated to Ril(j,m) =
0.5(ril(j,m) + 1). The original PRL-based updating be-
comes
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where pi(j) represents the probability that ith node of V1
matches jth node of V2. As discussed in the main paper,
p
(k)
i (j) in the numerator plays the role of weight factor.

Specifically, if we ignore the effect of p(k)i (j), Eq. (15) be-
comes the power-iteration-like linear updating scheme com-
monly used in SM [21] and TM [9].

Assume the highest probability for i0 ∈ V1 is pi0(j0).
Hummel and Zucker proved that p(k)i0
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the updating if R, the matrix form of Ri1i2(j1, j2) for all
(i1, i2) and (j1, j2), is symmetric [13]. To further acceler-
ate the convergence, the weighting factor is replaced from
p
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Define the compatibility coefficients as:

Ri1i2(j1, j2) =

{
Mi1,j1 i1 = i2 and j1 = j2

Ĥi1,j1,i2,j2 otherwise
(17)

where Mi,j is the first-order compatibility between ith node
of V1 and jth node of V2. Ĥi1,j1,i2,j2 denotes the compati-
bility between (i1, i2) ∈ E1 and (j1, j2) ∈ E2. The numera-
tor of Eq. (16) becomes:
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p̂
(k+1)
i (j) is updated with the combination of first

and second-order compatibilities. The main pa-
per shows that for a consistent updating scheme,∑

l

∑
m Ĥi,l,j,mp

(k)
l (m))2 ≥ 0.25M−1

i0,j0
. By replac-

ing the probability set p = {pi(j)} with the vector x,

the column-wise flattening of soft-constraint assignment
matrix X, Eq. (18) can be updated as

x̂(k+1) = (m̂⊙ x(k) +Hx(k))2 (19)

where ⊙ is the element-wise multiplication and the first-
order compatibility vector m̂ is obtained by column-wise
flattening M̂. The square calculation in Eq. (19) is also
element-wise. H is the second-order compatibility matrix.
Since both H and m̂ are dense, with the all-ones vector as
x(0), Eq. (19) converges consistently.

In our work, the updating scheme for PRL-based hyper-
graph matching is extended to

x̂(k+1) = (αm̂⊙x(k)+(1−α)H⊗1 x
(k)⊗2 x

(k))2 (20)

where ⊗l is the mode-l product of the tensor and vector
and α ∈ [0, 1] is a balance weight between the first and
third-order compatibilities. Since the third-order compati-
bility tensor H is highly sparse, the high value of x̂(k+1)

in Eq. (20) is concentrated if the sparse tensor is reliable.
In our work, a reliable tensor means most ground truth hy-
peredge pair compatibilities are successfully selected in the
tensor blocks.

7. Detailed Analysis in Sec. 4

Due to the space limitation of the main paper, we provide
a more detailed experiment analysis based on the results of
Sec. 4 to discuss the superiority and bottleneck of CUR-
SOR.

7.1. Memory Footprint Analysis in Sec. 4.1

Table 2 shows the detailed memory footprint of the exper-
iment result with CURSOR in Sec. 4.1 of the main paper.
Theoretically, the CUR decomposition of the matrix H, re-
quires O(cn1n2) space complexity. The tensor H, on the
other hand, only needs O(tr). For small-scale problems, the
sparse tensor occupies most memory footprint with a small-
size matrix. As the graph scale grows, with more columns
selected from the compatibility matrices for higher match-
ing accuracy, the main space occupation comes from H, and
the second-order CUR-based matching becomes the bottle-
neck for the graph matching problem. Although CURSOR
can deal with larger-scale tasks compared to ANN, its ca-
pability to solve scalable problems is limited to the second-
order matrix.



(a) Source (b) ANN (r1 = 900) (c) ANN (r1 = 50) (d) CURSOR (r = 25)

Figure 6. The detailed hyperedge correspondences between one sampled hyperedge from the source (yellow triangle in (a)) and target
images with ANN ((b) and (c)) and CURSOR (d). The white triangles in the target images denote all the hyperedges compared with the
source hyperedge, and the blue triangles are the hyperedges with the highest compatibilities (r1 for ANN and r for CURSOR). The green
dashed triangles represent the matched hyperedges, and the red one represents the mismatch.

Table 2. Detailed memory footprint of CURSOR in Tab. 1 of the
main paper.

Problem Parameter Memory Footprint
n1 vs n2 t c r H/(H+H)
30 vs 30 900 15 5 0.11MB/0.62MB
30 vs 50 1500 15 5 0.20MB/0.82MB
50 vs 50 2500 20 7 0.40MB/2.37MB

50 vs 100 5000 100 10 3.97MB/9.62MB
100 vs 100 10000 100 20 8.02MB/30.65MB
300 vs 300 30000 200 20 0.14GB/0.21GB
500 vs 500 50000 300 30 0.59GB/0.76GB
800 vs 800 80000 400 50 1.95GB/2.02GB

1000 vs 1000 100000 500 80 4.88GB/5.03GB

7.2. Visualization analysis in Sec. 4.3

We provide a more detailed analysis of the experiment
results from Sec. 4.3 to demonstrate the superiority of
CURSOR, as is shown in Fig. 6. Traditional ANN-based
methods compute the compatibilities between the sampled
source hyperedges (yellow triangle in Fig. 6a) and all the
target ones (fully connected white triangles in Figs. 6b-6c).
With the intermediate second-order result, CURSOR com-
putes fewer compatibilities, as is shown in Fig. 6d. To
find the corresponding hyperedge (green dashed triangles
in Fig. 6), a large amount (the hyperparameter r1 = 900
in Fig. 6b) of the highest compatibilities (blue triangles
in Figs. 6b-6d) should be selected for ANN. If we de-
crease r1 to 50, some correct ones will be missed (red tri-
angle in Fig. 6c). CURSOR can effectively find the hy-
peredges with the 25 highest compatibilities (green triangle
in Fig. 6d). Compared to the traditional tensor generation
methods, CURSOR can effectively increase the matching
performance with less computational complexity.
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Figure 7. (a) CUR-based second-order graph matching accu-
racy with various c. (b) The average accuracy using CURSOR
with CUR-based pairwise matching result and CURSOR with ran-
domly sampled indices (CURSOR-R).

8. Ablation Studies

To further analyze the effectiveness of several design
choices in CURSOR, ablation studies were conducted on
the 100-vs-110 random synthetic dataset introduced in
Sec. 4.1 of the main paper.

8.1. CUR-based Pairwise Matching

We first studied the effectiveness of the CUR-based second-
order graph matching. Two experiments were designed
to analyze the performance of the pairwise matching with
the CUR decomposition of the second-order compatibility
matrix H and the rough intermediate matching result, re-
spectively. The dataset’s noise level σ varied in the range
[0, 0.2].

The CUR-based second-order graph matching was first
evaluated on the dataset with various c, i.e., the number
of randomly selected columns from H. During the experi-
ment, only the second-order graph-matching result was an-
alyzed. We compared the proposed method with a PRL-
based pairwise matching using the full compatibility ma-



Table 3. Average time consumption for second-order graph match-
ing (in seconds)

Method Time (s)
Computing H Matching

Full Matrix 6.311 0.491
c = 10 0.018 0.016
c = 30 0.031 0.016
c = 100 0.109 0.043

trix. The matching accuracy is shown in Fig. 7a. Due to
the low-rank estimation, the CUR-based method decreased
the matching performance. Specifically, as the columns
were randomly chosen, the result was quite poor when c
was relatively small. However, with less than 1% (100 out
of 100×110) of columns selected, the CUR-based pairwise
matching algorithm achieved a comparable result to the al-
gorithm using the whole matrix. Table 3 reports the aver-
age time consumption of the compatibility matrix genera-
tion and graph matching. With only a few columns cal-
culated, the CUR-based second-order algorithm effectively
accelerated the matching process.

The effectiveness of the intermediate second-order
matching result was further studied. As discussed in
the main paper, the second-order matching result Pk =
{Pk

1 , · · · ,Pk
n1
} consists k best-matching target nodes for

each source node, where n1 denotes the number of the
source nodes. The hypergraph matching result with Pk

was compared to the result with k1 randomly sampled in-
dices in all three tensor modes (denoted as CURSOR-R).
The parameter c and k from Pk for CURSOR with the pair-
wise matching result was set as 100 and 10 respectively.
For CURSOR-R, k1 varied from 10 to 50. For both meth-
ods, the number of randomly selected hyperedges from the
source hyperedges t = 3000, the number of highest com-
patibilities in each tensor block r = 100, and the balance
factor of PRL-based algorithm α was set to 0.2. As shown
in Fig. 7b, CURSOR-R had a lower matching accuracy even
for k1 = 50. Assuming the number of nodes is n2 in the
target graph, theoretically, only 3 out of 3n2

2 fibers for each
tensor block, i.e., key fibers in our work, contain the entry
of the ground truth hyperedge pair. Due to the random sam-
pling, the probability of selecting the key fiber is (k1/n2)

2,
around 20.7% when k1 = 50 and n2 = 110. Therefore, the
sparse compatibility tensor generated by CURSOR-R was
highly unreliable. CURSOR with the CUR-based pairwise
matching result selected the key fiber in each tensor block
with a high probability, effectively increasing the final ac-
curacy.

8.2. CURSOR vs ANN-based Tensor Generation

Experiment results in Sec. 4 of the main paper have al-
ready shown that the proposed PRL-based algorithm with

CURSOR achieved higher matching accuracy than other al-
gorithms in most cases. One may wonder how the ANN-
based tensor generation performs with the same hypergraph
matching algorithm. In this experiment, we further compare
CURSOR with the ANN-based tensor generation method
applying PRL-based algorithm on the 100-vs-110 random
synthetic dataset. During experiment, c = 100, k = 10
and r = 100 for CURSOR. For ANN-based tensor genera-
tion, r1 was set as 100 for the same tensor density. For both
methods, t = 3000 and α = 0.2. The stopping criterion
of the PRL-based algorithm was set as ∥x(k+1) − x(k)∥2 ≤
10−8 and the maximum number of iteration was 100.

The average matching accuracy is reported in Fig. 8a.
The ANN method shows an unstable performance with high
σ since the compatibility tensor was too sparse. When α
was low, since the PRL-based algorithm focused on the
third-order compatibilities, the ANN method did not gen-
erate a reliable compatibility tensor. To make the algorithm
focus more on first-order compatibilities, α was further in-
creased to 0.8 for the ANN case, which significantly im-
proved the accuracy. The average number of iterations to
converge is shown in Fig. 8b. When σ > 0.02, the ANN
method did not converge within 100 iterations. With the
same tensor sparsity, CURSOR successfully converged in
all the cases. The decay of x(k) per iteration for the ANN
method and CURSOR with σ = 0.1 was further analyzed,
as shown in Fig. 8c. The ANN method did not converge
due to few ground truth hyperedge compatibilities selected
from the whole tensor. However, CURSOR chose the non-
zero compatibilities from a smaller reliable searching re-
gion. Therefore, it is capable of converging fast with the
same tensor sparsity.

9. Parameter Sensitivity Analysis
Experiments below are provided to investigate how the hy-
perparameters in CURSOR affect the final results. Since the
hyperparameter t, the number of randomly selected hyper-
edges, was thoroughly studied in previous works [9, 19, 20],
we do not redundantly analyze it here. The method was
evaluated on the random 100-vs-110 synthetic dataset in-
troduced in Sec. 4.1 of the main paper as well.

9.1. Parameter in Second-order Graph Matching

The sensitivity of parameter c to the whole framework was
first analyzed. During the experiment, the whole com-
patibility matrix was calculated directly with noise level
σ = 0.02. CUR decomposition was evaluated on the matrix
with various c for the pairwise graph matching. To analyze
the influence of c on the second-order matching result, we
define hit rate, calculated as

∑n1

i=1 δi/n1, where

δi =

{
1 The true match j ∈ Pk

i

0 Otherwise
(21)
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Figure 8. Results on 100-vs-110 synthetic dataset comparing CURSOR with ANN, α = 0.2 for CURSOR. (a) The average matching
accuracy using CURSOR and ANN with different α. (b) The average iterations for convergence using CURSOR and ANN with different
α. (c) The decay ∥x(k+1) − x(k)∥2 per iteration with different α using CURSOR and ANN. The noise level σ = 0.1.
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Figure 9. (a) The average hit rate over increasing k on a 100-vs-
110 synthetic dataset with σ = 0.02 from the CUR-based second-
order graph matching results. (b) The average accuracy on the
100-vs-110 synthetic dataset with σ ∈ [0, 0.2] and c ∈ [10, 100].

The average hit rate was computed over the increasing
number of selected highest compatibilities k, as shown in
Fig. 9a. Each curve represents the hit rate with c during
CUR decomposition. To achieve the same hit rate and set
k as small as possible, theoretically, the number of selected
columns needed to be as large as possible. However, when
increasing c from 50 to 100, the gain on hit rate is mi-
nor, with a relatively small k to reach a promising hit rate
like 0.9. Therefore, to balance the time consumption and
the matching performance, a relatively small proportion of
columns is sufficient for the rough pairwise matching result.

The influence of c on the final matching result was fur-
ther analyzed. During the experiment, we set k = 10,
r = 100, and α = 0.2. The noise level of the dataset was
assigned as σ ∈ [0, 0.2]. The result is reported in Fig. 9b.
Since the columns of the compatibility matrices were ran-
domly selected, the matching result was unstable when c
was less than 20. The performance gradually saturated with
over 50 columns (around 0.5% of the total columns). The
experiment results in Fig. 9a show that 50-100 columns can

already provide a reliable second-order matching result for
the following higher-order process, effectively decreasing
the computation cost.

9.2. Parameters During Tensor Generation
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Figure 10. Results on 100-vs-110 synthetic dataset with σ ∈
[0, 0.2] using CURSOR. (a) The matching accuracy with increas-
ing k. (b) The matching accuracy with increasing r.

The sensitivity of k and r to the final matching accuracy
was further studied. During the experiment, c was set as
100 and α = 0.2.

To figure out the influence of k, the parameter r was set
as 100, and k varied from 1 to 20. The result is shown in
Fig. 10a. It is obvious that a higher k can achieve higher ro-
bustness for target points with high noise impact. However,
with a polynomial O(tk2n2) computation cost for tensor
generation, the matching performance gradually reached its
peak. For instance, the matching accuracy increased more
than 35% from k = 1 to k = 5 when σ = 0.08, but less
than 2% from k = 15 to k = 20. For each tensor block, if
the entry of the ground truth paired hyperedge compatibil-
ity was included in r non-zero elements, the corresponding
nodes would be matched with a high probability. Therefore,
an appropriate k needs to be set to balance the computation
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Figure 11. Results on 100-vs-110 synthetic dataset with PRL-based matching algorithm. (a) The average matching accuracy using CUR-
SOR with different α. (b) The average iterations for convergence using CURSOR with different α. (c) The decay ∥x(k+1) − x(k)∥2 per
iteration with different α settings using CURSOR. The noise level σ = 0.1.

cost and the performance in practical use.
The effect of r was further analyzed by setting k as 10

and varying r from 20 to 200, as shown in Fig. 10b. Unlike
the results in Fig. 10a, CURSOR with the highest r per-
formed the worst. The reason may be that when the ground
truth hyperedge pair is already included in the non-zero
compatibilities, more redundant compatibilities can cause
lower matching performance.

9.3. Parameters of PRL-based Matching Algorithm

To study the sensitivity of α, the matching accuracy and
convergence speed using CURSOR were further analyzed.
During the experiment, c = 100, k = 10, and r was set
as 100. The stopping criteria of the PRL-based algorithm
was assigned as ∥x(k+1) − x(k)∥2 ≤ 10−8. The matching
accuracy with various α is shown in Fig. 11a. With a re-
liable compatibility tensor, the PRL-based matching algo-
rithm achieved almost the same performance regardless of
α. We further analyzed their convergence speeds, as shown
in Figs. 11b and 11c. As the noise level increased, more it-
erations were required to satisfy the stopping criteria, and
a lower α achieved faster convergence. As discussed in
the previous sections, the parameter α is a balanced factor
between first and third-order compatibilities. Although the
method converged faster with α = 0, the first-order compat-
ibilities stabilized the matching process and increased the
matching performance under some extreme circumstances.


