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Figure 1. Pipeline for Cloth Dataset generation.

1. Dataset Curation
As mentioned in the main paper, the proposed dataset curation pipeline is composed of two main branches. The first part is
related to the 3D cloth extraction whereas the second one tackles the alignment of a parametric body model to the raw data.
Prior to cloth extraction, we render, using the same camera parameters, the 3D scan from multiple views. We empirically
set the number of views to 40, striking a balance between runtime and triangulation results. For each one of the rendered
views, we utilize SAM [5] to extract cloth segmentations. To automatically segment upper and lower garments, we use a
voting scheme between the detected joints of the upper and lower body, respectively. Specifically, we utilized Mediapipe [2]
to acquire 2D joint positions for view rendering. Using the obtained 2D joint positions, we can easily locate each mask. The
mask which contains shoulders/elbows/spine indicates a mask for the top, while the mask that contains hips/knees/ankles is
considered the bottom mask. Following this, using all different views, we lifted the 2D landmarks to 3D by linear triangula-
tion.

In the second stage of our pipeline, we used the detected 3D joints J to fit the parametric SMPL body model [6]. To do so
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Method CD (×10−2) ↓ NC ↑
w/o Triplane 0.47 0.92
w/o Dual Discriminator 0.28 0.96
Proposed 0.12 0.98

Table 1. Quantitative comparison of the reconstruction performance for ablation study.

we devised a multi-term loss function L:

L = LJ + LCD + λoutterLoutter + λregLreg (1)

where LJ denotes an L1 loss between the detected and the SMPL 3D joints, LCD the Chamfer distance loss between the
SMPL body and the raw scan, Loutter a loss that penalizes SMPL body to lie inside the raw scan, Lreg a regularization
and λoutter, λreg weighting terms to scale the losses. More specifically, to ensure the SMPL fitting remains within the inner
surface of the scan, we integrated a loss function that directs the vertices of the SMPL body, which fall outside the scan,
towards the inner surface of the scan. To identify the vertices of SMPL that are outside the scan surface, we find for every
vertex of SMPL body vb its closest vertex on the scan vs and measure the angle difference between the vector connecting
the two vertices v̂b→s and the normal vector nb of vertex vb. If the angle of the two vectors

α = cos−1(
v̂b→s · nb

∥v̂b→s∥∥nb∥
) (2)

is greater than 90o, we apply an L1 contact loss to the vertex vb to match the scan vertex vs. Finally, similar to [6], we apply
a regularization to the SMPL shape parameters β to prevent irregular body shapes:

Lreg = ||β||2 (3)

The two branches are aggregated to normalize the cropped 3D garments to the canonical pose. In particular, for every
point in the garment surface, we find its closest point in the SMPL mesh and using the linear blend-skinning of SMPL, we
canonicalize the garment to the zero pose. An overview of the pipeline is depicted in Fig. 1.

2. Ablation Study
We conducted an ablation study to illustrate the functionality of the core components of the proposed model. In particular, we
ablated two key components of the proposed model: a) the Triplane generator and b) the Dual Discriminator. Both network
variants were trained on the same training/test set with the proposed method.

Tri-plane Generator. We built the proposed model on a tri-plane generator, which can effectively encode high frequency
details and increase the capacity of the network, without affecting the memory requirements. As can be observed in Fig. 2,
the proposed model trained without the tri-plane generator, despite maintaining an overall appropriate garment style, fails
to encode high frequency details and learns approximations of the wrinkles that result in non-smooth surfaces. This can be
quantitatively validated in Tab. 1, where the model with the ablated tri-plane generator exhibits a significant performance
drop on the normal consistency (NC) metric. Intuitively, the tri-plane generator simplifies the task of the decoder module, by
learning an implicit-explicit representation of the grid.

Dual Discriminator. The second component of the proposed network is the Dual Discriminator that enforces the generator
module to produce realistic clothes. Motivated by the lack of high frequency details on the generated clothes, we built a dual
branch discriminator that can not only guide the generation of realistic styles, but also enforce high frequency details such
as wrinkles and creases on the generated garments. The discriminator takes as input a dual representation of the cloth
considering both the global and the local details of the cloth, which enforces the generation of high frequency details. As
we showed in Fig. 3, sampling points based on their curvature results in points that span in the detailed regions of the cloth
which improves the generation of high frequency details.

As can be easily observed on Fig. 2, the exclusion of the dual discriminator leads to smooth surface garment generation,
lacking intricate details such as wrinkles and creases. Quantitatively, this results in a performance drop on both the Chamfer
distance (CD) and the normal consistency (NC) metrics, as depicted in Tab. 1.

3. Additional Results
In this section we present additional qualitative results of the proposed method, aligned with the main paper.
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Figure 2. Ablation Study. Qualitative evaluation of the main components of the proposed model.

Training Sample                                             Curvature Map                                            Curvature Sampling                                           Uniform Sampling

Figure 3. Dual Discriminator: Illustration of points sampled by their curvature.

3.1. Mask to Cloth Generation

To showcase the generative power of the proposed model we selected as input a set of diverse 2D cloth visibility masks. In
particular, as shown in Fig. 4, we evaluated the model in generating complex and challenging garments, like pleated skirts
and bell-sleeve tops which develop simple everyday clothing styles, such as T-shirts and trousers. Additionally, we explore
the generation of garments with asymmetric sleeve and leg lengths, as shown in the last two samples of Fig. 4. The results
demonstrate the capability of the model in producing realistic outputs, that are aligned with the condition mask, which can
undoubtedly provide a powerful tool that aids fashion technology. Furthermore, the model exhibits a commendable ability to
interpolate and generate realistic results for garments with asymmetric features. This underscores the ability of the model in
cloth design through the simple input of a 2D mask.
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Figure 4. Additional Results: Garment Generations from 2D masks.

3.2. Garment Reconstruction Comparison

In Fig. 5 further examples of cloth mesh reconstruction are presented. To qualitatively evaluate the reconstruction per-
formance of the proposed method we selected several everyday clothing types. Additionally, we report the reconstruction
performance of our model on two different cloth datasets, namely Cloth3D [3] and ClothesNet [8]. As can be seen in Fig. 5,
it is evident that the proposed model adeptly reconstructs clothing styles, preserving natural wrinkle details. In contrast,
DrapeNet [4] tends to generate excessively smooth meshes that lack details and creases. In the case of Cloth3D [3] garments,
our model excels in replicating the overall mesh shape compared to Drapenet. Interestingly, Design2Cloth achieves to suc-
cessfully reproduces the overall shape of the dress from ClothesNet [8] dataset, while DrapeNet falls short in achieving a
cloth-like result.
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Figure 5. Additional Results: Garment reconstruction comparison. Top: DigitalMe data; Bottom: Cloth3D [3] and ClothesNet [8] data.

3.3. Interpolation

Beyond the interpolation outcomes detailed in the main paper, we showcase further interpolations, on both style and shape
latent components. Fig. 6 illustrates the ability of the proposed method to generate smooth interpolations between diverse
cloth styles. For better visual evaluation please see also the supplementary video.

3.4. Generation Diversity

To showcase the diversity of our model, we measured the similarity between training and generated distributions. We pre-
sented the result of measuring Jensen-Shannon Divergence (JSD), Coverage (COV), Minimum matching distance (MMD)[1],
and 1-nearest neighbor accuracy (1-NNA)[7] for point clouds in the training set and generated set in Tab. 2.

JSD (×103) ↓ MMD(×103) ↓ COV(%,↑) 1-NNA (%,↓)
DrapeNet 9.036 6.952 44.73 76.14
Proposed 2.753 1.638 51.04 62.21

Table 2. Generation results.

3.5. Generation Detail

We showed the generalization capabilities of the network in Fig. 7 where the generated samples have different high frequency
details compared to their closest training sample in the latent space.
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Figure 6. Additional Results: Interpolation results between diverse garment styles and shapes.
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Figure 7. Generation Detail: Reconstructions and the closest training samples.
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