
Dynamic Policy-Driven Adaptive Multi-Instance Learning for Whole Slide
Image Classification

Supplementary Material
Tingting Zheng1 Kui Jiang1 Hongxun Yao1

1 Harbin Institute of Technology
23b903051@stu.hit.edu.cn, {jiangkui, h.yao}@hit.edu.cn

In the supplementary materials, we detail the methods and dataset descriptions, while providing more experimental
results and comprehensive discussions. In Section A, we detail both the Dynamic Policy Instance Selection Scheme (DPIS)
and the optimization method used for Selection Fusion Feature Representation (SFFR). Section B elaborates on dataset
description and implementation details. In Section C, extensive experiments and in-depth analyses are conducted to verify
the contributions of individual components, including the impact of the reward-punishment system on final performance,
comparing pseudo-bags level methods with our DPIS scheme, and additional visualization. Finally, Section D investigates
thoroughly the performance improvement achieved by our DPIS scheme, highlighting its advantages and potential areas for
improvement.

A. More Details for Method
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Figure S1. Illustration of the proposed selection fusion feature representation (SFFR) module, proximal policy module (PPM) and
Transformer classification module (TCM) in dynamic policy-driven adaptive multi-instance learning (PAMIL) framework. We sample
features vsti in the remaining feature space IBt

i according to the instances indexes ast−1

i . SFFR then takes vsti and an initial token ust
i as

inputs, refining ust
i by utilizing a Transformer module (TRM) and a multi-head attention (MHA) mechanism to fuse vsti and past tokens.

Meanwhile, we introduce a Siamese (SIA) structure between ust
i and u

st−1

i to enhance the robustness of ust
i (as described in Section A.2).

Finally, TCM uses a class token (CLS) hcls
i to aggregate tokens for inferring the probability Ŷi of ith WSI.

A.1. Dynamic Policy Instance Selection Scheme

As described in Section 3.3 of the main paper, we integrate the dynamic instance sampling and experience-based learning
of proximal policy module (PPM) Gp into a unified framework to facilitate decision-making, forming a novel dynamic policy
instance selection (DPIS) scheme. The DPIS aims to select the informative samples from the remaining instances, guided by
previous knowledge and decision-making feedback. As shown in Figure S1, the corrective past information and the current
features token ust

i are packed into a recurrent neural network (RNN) GRNN
p [13] to fully explore the temporal dependencies,

followed by a multi-layer perceptron (MLP) GMLP
p to derive the relation index for the next sampling. This process is expressed

as

P t
i (a

st
i |ust

i ) = GMLP
p (GRNN

p (ust
i )), (1)

Where asti represents the indexes of the next sampling. Considering the application convenience, and the connectivity and
proximity between the current and the remaining instances, we advise three different schemes to optimise instance sampling.
They are greedy policy-based max similarity scheme (GMSS), greedy policy-based hybrid similarity scheme (GHSS) and
policy-optimized linear interpolation instances scheme (LIIS).



(b) Normal WSI (a) Tumor WSI 

Figure S2. Illustration of whole slide images (WSIs). The green annotation indicates the tumor regions. The red bounding boxes in the
images indicate that the cropped instances within these boxes share spatial and contextual consistency.

Greedy Policy-based Max Similarity Scheme (GMSS). Since the similarity between the current instances and the remain-
ing instances is taken into consideration, we introduce the max-feature similarity with a ξ-greedy policy [12]. Specifically,
when the probability P t

i ∈ R1×1 is above the given threshold ξ, we choose M indexes closest to ust
i in remaining features

(more M details and settings are in the Sections 3.2 and 4.6 of the main paper). Otherwise, M instance indexes are ran-
domly selected for the next step. This scheme balances feature relevance and historical data exploration, efficiently capturing
robustness features without over-reliance on any single instance. However, this method relies heavily on the accuracy of
pseudo-bag labels, which may lead to false positives or false negatives.

Greedy Policy-based Hybrid Similarity Scheme (GHSS). To mitigate the risk of GMSS, we employ a hybrid similarity-
greedy approach. Unlike GMSS, GHSS selects the top M

2 indexes nearest to ust
i and another M

2 indexes away, at a distance
of 2 × M . It greatly alleviates the overfitting. Additionally, to improve efficiency, instances selected at time t are masked
in subsequent selections. ξ is initially set to 0 and increases linearly to 0.9 along with iterations, shifting DPIS from broad
exploration to targeted selection as knowledge accumulates.

Policy-optimized Linear Interpolation Instances Scheme (LIIS). Existing works [19, 20] have demonstrated that ap-
plying reinforcement learning (RL) directly can produce more discriminative features or instances to facilitate classification
performance. However, it is non-trivial to identify salient instances from many instances for the next sampling. In addition,
Figure S2 displays that the adjacent instances share spatial and context consistency. Therefore, we advise a policy-optimized
linear interpolation instances scheme (LIIS) for sampling neighboring instances in the remaining space. Specifically, PPM
aggregates past experience and current feature into ust

i to estimate potential sampling regions likely to contain crucial in-
stances, expressed as probabilities P t

i ∈ R1×M . We then employ linear interpolation between instances of the remaining
space according to the indices (locations) of current instances and probabilities P t

i ∈ R1×M , and select the top M probability
indices for the next step. LIIS eliminates similarity calculations and is more flexible in adapting to various bag sizes.

A.2. Selection Fusion Feature Representation

As illustrated in Section 3.4 of the main manuscript, to achieve general and robust token ust
i , the selection fusion feature

representation (SFFR) module is equipped with a more stable and efficient Siamese (SIA) structure [4] among u
st−1

i and ust
i .

As shown in Figure S3, the Simsiam (SIA) GSIA takes the current token ust
i and past token u

st−1

i as inputs. These tokens are
processed through a multi-layer perceptron (MLP) GMLP

SIA to transform ust
i into psti , defined as psti = GMLP

SIA (ust
i ). The SIA

contrastive loss [4] aims to minimize the negative cosine similarity between psti and u
st−1

i for enriching the informational
content of ust

i . This process is expressed as

D(psti , u
st−1

i ) = − psti
∥psti ∥2

· u
st−1

i∥∥ust−1

i

∥∥
2

, (2)

where ∥·∥2 is L2-norm. The core component of SIA is to stop-gradient (Stop-grad) operation to avoid model collapse. Eq. 2
is modified as

D(psti , u
st−1

i ) = D(psti ,Stop-grad(ust−1

i )). (3)
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Figure S3. Simsiam architecture in our proposed selection fusion feature representation (SFFR) module. SFFR consists of a Trans-
former module (TRM), a multi-head attention (MHA) mechanism, and a Simsiam (SIA) architecture. SFFR takes a vector vpti to learn
spatial information in vsti . The TRM and MHA are designed to employ an initial token ust

i , aiming to capture local, global, and histori-
cal representations through the interactions between the current vsti and past tokens {usk

i }t−1
k=1. Finally, we introduce SIA contrastive loss

among ust
i and u

st−1

i from a multi-layer perceptron (MLP) for more robust and discriminative feature ust
i to facilitate the decision-making.

Figure S4. Illustration of different grouping schemes on the CAMELYON16 test set. The horizontal axis represents WSI index. The
vertical axis denotes the number of bag or pseudo-bag instances per WSI using different grouping schemes. The 5 or 10 represent by a
pseudo-packet scheme to split each bag into 5 or 10 groups.

The final SIA contrast loss is defined as

Li
SIA =

1

T

T∑
t=1

[
1

2
D(psti , u

st−1

i ) +
1

2
D(p

st−1

i , ust
i )

]
. (4)

B. More Dataset Description and Implementation Details
B.1. Dataset Description

The CAMELYON16 dataset [2] consists of 270 training whole slide images (WSIs) (159 normal and 111 tumor) and 129
testing WSIs (80 normal and 49 tumor). Following TransMIL [14], we use CLAM [10] to identify tissues on WSIs and
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Figure S5. Accuracy, F1 and AUC scores with different reward values on the CAMELYON16 and TCGA Lung datasets. The
horizontal axis indicates the different reward r∗i values.

obtain non-overlapping 256× 256 instances at 20× magnification. The TCGA Lung cancer dataset [16] contains two cancer
subtypes: Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). It provides 541 LUAD slides from
478 cases and 512 LUSC slides from 478 distinct cases. We adopt the same pre-processing as DSMIL [8] for 1046 WSIs,
segmenting each WSI into non-overlapping patches of 224× 224 at 20× magnification.

After pre-processing, the TCGA Lung dataset comprises approximately 4.1 million instances, averaging 4, 000 instances
per bag. The CAMELYON16 dataset yields about 4.6 million instances, with an average of roughly 13, 600 instances per
bag. As shown in Figure S4, the test set shows a range of bag sizes, with maximum and minimum extents of 55, 852 and
1, 347, respectively. Notably, positive instances in the tumor WSIs are scarce, presenting a significant challenge to traditional
bag and pseudo-bags based multi-instance learning (MIL) methods.

B.2. Implementation Details

We adopt the same settings as [14, 15, 17, 18] for a fair comparison due to discrepancies of dataset splits. The CAME-
LYON16 official training set is further randomly divided into training and validation sets at 9 : 1. Following [10, 14, 15, 17],
we modify a pre-trained ResNet50 (without its last convolutional module, as trained on ImageNet [5]) to extract 1024-
dimensional feature vectors from each instance using global average pooling. For the TCGA Lung dataset, the dataset is
randomly split into training, validation, and testing sets with ratios of 65 : 10 : 25. We employ the SimCLR [11] with a
ResNet18 [6] encoder to obtain 512-dimension feature vectors from each patch.

AdaMax optimizer [1] with a weight decay of 1e − 5 and the initial learning rate of 1e − 4 are used. To enhance model
generalization and label relevance, we employ a cosine scheduler [9] for dynamic adjustment of the weights λSTL and λSIA in
the Eq.(9) (detailed in main paper). During the initial phase of training, a high value (e.g., 0.5) is assigned to λSIA encouraging
robust feature exploration by the SFFR module. As the training progresses, λSIA is gradually reduced while λSTL is increased,
guiding the model from broad feature exploration to more precise feature refinement. To prevent potential bias, a maximum
limit of 0.1 is set for λSTL. The loss Li

WSL function provides consistent and stable supervisory information throughout the
training, ensuring that predictions align with the actual WSI labels. With the above settings, we train our PAMIL with 300
epochs with batch size 1 on one NVIDIA 2080Ti GPU.

C. More Experiments
C.1. Effects of Reward

We construct an in-depth exploration of how rewards affect instance sampling robustness and labeling relevance in the
DPIS scheme. As shown in Table S5, compared to using only the penalty term, appropriately increasing the reward signifi-
cantly enhances model performance across all metrics and datasets. For positive WSIs in the CAMELYON16 dataset, which
occupy small tumor portions [8, 14], the challenge lies in prompting the model to focus on positive instances without over-
fitting. Therefore, a slightly smaller reward guides attention from negative to tumor instances. In contrast, since the TCGA
lung dataset comprises over 80% tumor areas [14], a larger reward ensures the model selects the most informative instances
for achieving the best performance. However, a larger reward excessively emphasizes the role of labels, which limits the
generalizability of the model, resulting in higher false positive or false negative rates. To this end, we set the reward r∗i = 1
for the CAMELYON16 dataset and r∗i = 2 for the TCGA Lung dataset.



Table S1. Comparison of the pseudo-bags-level method DTFD and the bag-level method ABMIL on the CAMELYON16 dataset.
The numbers in bold indicate the best performance. ∆ denotes the performance improvement by using Eq. 5 to predict the WSI probability
compared to the prediction using only hcls

i in Eq. 6. “TPB@AvgTop1”, “TPB@AvgTop3” and “TPB@AvgTop5” indicate using ŷi,max,
avg(ŷi,1:3) and avg(ŷi,1:5) to predict tumor WSI label probability, and otherwise by Ŷi. Relative improvement ratio: ∆ = (Eq 5−Eq 6)×100%

1−Eq 6

Metrics Methods Eq. 6 TPB@AvgTop1 TPB@AvgTop3 TPB@AvgTop5 Eq. 5 ∆ (%) ↑

Accuracy

ABMIL [7] (Baseline) 0.845 — — — — —
DTFD-AFS [17] 0.798 0.845 0.837 0.807 0.822 11.7
DTFD-MaxMinS 0.822 0.884 0.837 0.791 0.833 6.51

DTFD-MaxS 0.845 0.899 0.853 0.791 0.847 1.25
DPIS-GMSS 0.915 0.985 0.977 0.977 0.963 57.1
DPIS-GHSS 0.923 0.954 0.946 0.946 0.942 25.0
DPIS-LIIS 0.954 0.969 0.961 0.961 0.961 16.6

F1

ABMIL (Baseline) 0.779 — — — — —
DTFD-AFS 0.759 0.825 0.814 0.748 0.786 11.2

DTFD-MaxMinS 0.758 0.854 0.784 0.703 0.775 6.95
DTFD-MaxS 0.756 0.854 0.771 0.640 0.755 −0.334
DPIS-GMSS 0.876 0.980 0.969 0.969 0.949 58.4
DPIS-GHSS 0.894 0.939 0.928 0.928 0.922 26.7
DPIS-LIIS 0.936 0.958 0.947 0.947 0.947 17.4

AUC

ABMIL (Baseline) 0.839 — — — — —
DTFD-AFS 0.896 0.896 0.832 0.807 0.858 −36.3

DTFD-MaxMinS 0.858 0.951 0.917 0.896 0.906 33.5
DTFD-MaxS 0.865 0.983 0.977 0.969 0.948 61.8
DPIS-GMSS 0.905 0.996 0.993 0.992 0.972 70.0
DPIS-GHSS 0.944 0.990 0.976 0.970 0.970 46.0
DPIS-LIIS 0.944 0.992 0.987 0.987 0.977 59.6

C.2. Comparison with Pseudo-bags-level Method

To validate the effectiveness of our proposed PAMIL method in sampling discriminative instances and fusing historical
information for enhanced decision-making representation, we conduct comparison between PAMIL and the pseudo-bags-
level DTFD [17] method by using Eq. 5 and 6 for predicting WSI label final probabilities on the CAMELYON16 dataset.
The DTFD methods are built from officially released code. We employ bag-level attention-based multi-instance learning
(ABMIL) [7] method as the baseline. Each model is trained for 300 epoch with base size 1 on a single NVIDIA 2080Ti. In
the testing phase, the final decision-making Ŷ ′

i for Xi is depicted as

Ŷ ′
i =

{
ŷi,max+avg(ŷi,1:3)+avg(ŷi,1:5)+Ŷi

4 , if Yi = 1,

Ŷi, if Yi = 0.
(5)

Ŷ ′
i = Ŷi = Gc

MLP(hcls
i ), (6)

Where Gc
MLP is a MLP in the Transformer classification module (TCM). {ŷi,t}Tt=1 are drawn from a MLP GMLP

s to infer the
category of {ust

i }Tt=1. ŷi,max, avg(ŷi,1:3) and avg(ŷi,1:5) denote the top-1 max, and averages of the top 3 and 5 in {ŷi,t}Tt=1,
respectively. Ŷi indicates that class token (CLS) hcls

i is employed to predict WSI label.
Results in the terms of the Area Under Curve (AUC), accuracy, F1 score (F1) and relative improvement ratio ∆ are

presented in Table S1, where a higher ∆ indicates the presence of label-related and robust pseudo-bag representations in
{ust

i }Tt=1 for accurate bag hcls
i prediction. As shown in Table S1, our proposed PAMIL method significantly outperforms

all competitors (Eq. 6). In particular, considering pseudo-bags predictions (Eq. 5), we observe a remarkable enhancement in
classification accuracy compared to DFTD. This improvement is attributed to the DPIS scheme, which samples the most in-
formative instances from the sampling bag. However, previous MIL methods are barely explore mutual relationship between
sampling, feature representation and decision-making. Although DTFD-MaxS gains a slight advantage over DPIS-GHSS and
DPIS-LIIS in terms of AUC improvement rate, it suffers from lower accuracy than DPIS-GHSS and DPIS-LIIS by 9.5% and
11.4%, respectively (referring to the results of DPIS-GHSS, DPIS-LIIS, and DTFD-MaxS in Eq. 5 ). In addition, since AB-
MIL is poor in identifying salient information from thousands of instances, it fails to surpass the pseudo-bags-level approach
on the AUC. These results demonstrate that our strategy effectively balances specific feature representations, alleviating the
shortcomings of both bag-level and pseudo-bags-level methods.



C.3. Additional Visualization

(b) PAMIL (Ours) (c) K-Means Grouping (d) Random Grouping (f) ABMIL(e) DTFD(a) Input Tumor Region

Figure S6. Visual comparisons with pseudo-bags schemes, pseudo-bags-level method (DTFD) and bags-level method (ABMIL) on
CAMELYON16 test set. Our PAMIL presents more attention to tumor instances. The pseudo-bags schemes (c) and (d) are K-Means
grouping and random grouping split each bag of 10 groups for training TRM in SFFR and TCM under the cross-entropy loss at the level
of WSI (detailed in the main manuscript Eq.(7)). The blue outline indicates the tumor region. Attention score (0-1): indicates model focus
on tumor instances, higher values show more attention, not positive probability.

To further demonstrate robustness and effectiveness, besides the aforementioned quantitative comparisons, a visual com-
parison of the pseudo-bag schemes, the pseudo-bags-level method DTFD, and the bag-level method ABMIL is presented
in Figure S6. Our method, K-Means, and random grouping visualize attention scores from the final Transform layer in the
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Figure S7. Different sampling schemes performance on CAMELYON16 and TCGA Lung datasets. The solid and dot lines represent
the CAMELYON16 dataset and TCGA Lung dataset, respectively. “CLS”, “AvgTop1”, “AvgTop3” and “AvgTop5” indicate using hcls

i ,
ŷi,max, avg(ŷi,1:3) and avg(ŷi,1:5) to predict tumor WSI label probability. Average is their average result.

TCM. DTFD and ABMIL generate heat maps based on normalized attention scores. As we can see, our method effectively
focuses on tumor instances compared to all competitors, providing more convincing evidence for the high accuracy shown
in Table S1. Specifically, PAMIL guides the model toward sampling salient instances by combining relationships between
historical information and feedback correction mechanisms for more precise predictions. Although the attention mechanism
demonstrates impressive performance in extracting key information, capturing label-relevant instances from long sequences
using a sigmoid layer is still a challenging task, as evidenced by slightly diminished attention to tumor instances in ABMIL
compared to DTFD. In addition, random grouping and prior context-based clustering (K-Means) tend to scatter a small frac-
tion of tumor instances across wide groups, which leads to the model not fully exploring tumor information, thus shifting to
learning more normal tissue features. Consequently, these methods struggle with the risk of over-fitting or false negatives due
to inadequate exploration of the mutual relationships among instance sampling, feature representation, and decision-making,
resulting in an imbalanced focus on either tumor or normal instances.

D. Discussions on DPIS Scheme
As shown in Figure S7, we carry out comparative analyses of various sampling schemes on CAMELYON16 and TCGA

Lung datasets. It is observed that selecting the max-feature similarity instances (GMSS) significantly improves performance
on the CAMELYON16 dataset while focusing on fewer label-related instances (GHSS) enhances classification precision
in the TCGA Lung dataset. Specifically, since CAMELYON16 positive WSIs contain fewer tumor tissues, robust token
representation is achieved by exploring feature correlations and integrating historical data. The GMSS effectively aggregates
the most informative bag representation via sampling instances most similar to the token for facilitating precise decision-
making. The GHSS discards 50% of stable and specific features introducing more noise into sub-bags, which leads to
an increase in false negatives. In contrast, since the TCGA lung dataset contains a large number of tumor regions with
positive WSIs, LIIS and GHSS consider non-optimal instances and employ contrast loss and reward-penalty mechanisms for
generalized features, thus considerably improving inference robustness. Overall, extensive experiments in WSI tasks have
verified the effectiveness of our proposed PAMIL method.

Limitations Due to the complex biological structures and specific tumor distribution in WSIs, like other MIL methods [3,
10, 15, 17], our proposed GHSS scheme also considers a balanced mixture of salient and non-salient instances proportions.
However, we plan to optimize the state token representation and sampling schemes for a variety of WSI datasets.
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