
Free3D: Consistent Novel View Synthesis without 3D Representation

Supplementary Material

The supplementary materials are organized as follows:
• A video to illuminate our work and the rendered videos.
• Introduction for the baseline diffusion model.
• Experiment details.
• Results for more single view NVS.

A. Background: Diffusion Generators

In order to achieve sufficient generalization to operate in an
open-set category setting, Free3D builds on a pre-trained
2D image generation, and specifically Stable Diffusion
(SD) [51]. SD is a Latent Diffusion Model (LDM) trained
on billions of text-image pairs from LAION-5B [56]. It con-
sists of two stages. The first stage embeds the given image
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autoencoder E : x 7! z, paired with a decoder D : z 7! x,
which reconstructs the image (x = D � E(x)). The second
stage uses diffusion to model the distribution p(z|y) over
such latent codes, where y lumps any conditioning infor-
mation (e.g., text, image, or viewpoint). Diffusion involves
a forward noising process that gradually perturbs the given
latent z0 = z by adding the Gaussian noise ✏ in a Markovian
fashion:
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↵t := 1 � �t denote the noise strength at different steps.
{�t}Tt=1 is a pre-defined variance schedule. Ultimately,
p(zT |y) is approximately normal; we can thus easily sam-
ple zT , and then go back to z0 via the backward denoising
process using the predicted noise:
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where ✏✓ is typically an UNet [16], and {�t}Tt=1 is another
control of noise ✏, which is also a pre-defined schedule cor-
responding to the schedule �t and introduces uncertainty
for the synthesis of different views. Similar to the vanilla
DDPM [24], SD uses the following training objective to op-
timize the UNet ✏✓:
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B. Experiment Details

The Stable Diffusion (SD), originally trained for text-
to-images generation, requires adaptation to suit image-
conditional NVS tasks. Following Zero-1-to-3 [38], we uti-
lize the image-to-image Stable Diffusion checkpoints3. Our

3https://huggingface.co/spaces/lambdalabs/stable-diffusion-image-
variations

baseline code is built upon the Zero-1-to-3 [38]4. Hyper-
parameters are configured in accordance with the default
settings of the baseline code. The ray conditioning nor-
malisation (RCN) is incorporated into each ResNet block
within the diffusion Unet ✏✓, while the pseudo-3D cross-
attention is introduced after the original CLIP-conditional
cross-attention layer (as illustrated in Fig. 2).

Instead of directly providing ruv = (o ⇥ duv,duv)
to the network for modulating the features, we em-
bed them into higher-dimensional features, following
the approach of NeRF [43] and LFN [60]. In par-
ticular, we employ the element-wise mapping r 7!
[r, sin(f1⇡r), cos(f1⇡r), · · · , sin(fK⇡r), cos(fK⇡r)],
where K is the number of Fourier bands, and fk is equally
spaced to the sampling rate. In all experiments, K is set as
6, leading to 78 = 2 ⇥ 3 ⇥ Ko + 3 + 2 ⇥ 3 ⇥ Kd + 3 =
(6 + 6) ⇥ 6 + 6 dimensional features (as depicted
in Fig. 2(a)).

Training Details. Our model was trained on 4⇥ A40 48GB
GPUs in two stages: i) We first finetuned the model with
RCN, utilizing a batch size of 256 for 3 days on random
camera viewpoints, enhancing the pose accuracy for target
views. ii) Subsequently, the pseudo-3D cross-attention was
finetuned on the 4 nearest views, employing a batch size of
192 for 2 days. In the second stage, different views from
one instance were perturbed by adding noise from the same
time step t.

In an alternative approach during the first stage, we
initially attempted to jointly train the pseudo-3D cross-
attention with random camera viewpoints. However, the
performance is worse than the configuration D. We be-
lieve this is because the camera viewpoints have a large gap
along these random views in the rendered datasets, mak-
ing it harder to calculate the similarity across these frames.
In all experiments, we use AdamW with a learning rate of
10�5 for the old parameters in the original diffusion Unet ✏✓
and a 10⇥ larger learning rate for new parameters, namely
the parameters for RCN and Pseudo-3D cross-attention.

Inference Details. At the testing phase, we configure the
diffusion model with a sampling step set to T = 50. The
computational time for rendering a novel view using our
proposed Free3D is approximately 3 seconds, utilizing an
A6000 GPU. For a fair comparison, all models are evalu-
ated on the same A6000 GPU employing the same batch
size of 4. This batch size is chosen due to the operational
constraints of syndreamer [39], which can only run such a

4https://github.com/cvlab-columbia/zero123
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small size. Additionally, we also utilize the CFG with a
scale s = 3 to guide the rendering for each target view.

360
�

Video Rendering. To render a 360� video, we estab-
lish a circle trajectory by uniformly subdividing the azimuth
� into discrete intervals of 2⇡

50 = 7.2�, while the elevation ✓
and the distance z remain fixed. For each 3D instance, we
replicate the same latent variable zT over 50 frames, which
can minimize temporal flickering across different views.
Additionally, we also set the parameter �t in Eq. (A.2) to
zero, thereby further mitigating uncertainty introduced by
varying noise patterns.

C. More Visual Results

More results on Objaverse NVS. In Figs. C.1 and C.2,
we present more visual comparisons on Objaverse

datasets [15] that given one input image and the target view-
point, all models render the target novel view. This is an
extension of Fig. 4 in the main paper.

Here, all examples shown come from the correspond-
ing test-set following the split, as in Zero-1-to-3 [38].
These examples are good evidence that our Free3D is suit-
able for open-set categories NVS, where it can generate se-
mantically reasonable content with visually realistic appear-
ances across various categories. More importantly, com-
pared to existing state-of-the-art methods, the Free3D pro-
vides better results with a more precise pose for the target
novel view. This observation suggests that the RCN is able
to provide better viewpoint perception for the NVS.

More results on OmniObject3D and GSO NVS. In
Figs. C.3 and C.4, we show additional comparison results
on OmniObject3D [73] and GSO [17] datasets, respec-
tively. This is an extension of Fig. 5 in the main paper,
which demonstrates the generalizability of our Free3D on
unseen datasets encompassing various categories.

As can be seen from these results, although the baseline
Zero-1-to-3 [38] provides visually realistic appearances for
all objects, the content is not always reasonable, and the
pose is inaccurate in many cases. This indicates the global
language token embedding with elevation ✓, azimuth �, and
distance z is not so precise for the network to interpret and
utilize the camera viewpoints. While the Zero123-XL [14]
and consistent123 [69] enhance the quality by training on a
larger dataset and employing multi-view diffusion, respec-
tively, they do not directly deal with the camera pose per-
ception. In contrast, our Free3D leverages the per-pixel ray
conditioning as well as the modulating, which significantly
improves the pose perception accuracy.



(a) Input View (b) Target View (c) Zero123[38] (d) Zero123-XL[14] (e) SyncDreamer[39] (f) Consistent123[69] (g) Ours Free3D

Figure C.1. Qualitative comparisons on Objaverse dataset. Given the exact target pose, the proposed Free3D significantly improves
the pose precision compared to existing state-of-the-art methods.



(a) Input View (b) Target View (c) Zero123[38] (d) Zero123-XL[14] (e) SyncDreamer[39] (f) Consistent123[69] (g) Ours Free3D

Figure C.2. Qualitative comparisons on Objaverse dataset. Given the exact target pose, the proposed Free3D significantly improves
the pose precision compared to existing state-of-the-art methods.



(a) Input View (b) Target View (c) Zero123[38] (d) Zero123-XL[14] (e) SyncDreamer[39] (f) Consistent123[69] (g) Ours Free3D

Figure C.3. Qualitative comparisons on OminiObject3D dataset. Given the exact target pose, the proposed Free3D significantly
improves the pose precision compared to existing state-of-the-art methods.



(a) Input View (b) Target View (c) Zero123[38] (d) Zero123-XL[14] (e) SyncDreamer[39] (f) Consistent123[69] (g) Ours Free3D

Figure C.4. Qualitative comparisons on GSO dataset. Given the exact target pose, the proposed Free3D significantly improves the pose
precision compared to existing state-of-the-art methods.
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