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Supplementary Material

We present the visualization of opacity maps (Sec. 7) and
scaling maps (Sec. 8), performance under randomly placed
camera setup (Sec. 9), run-time comparison (Sec. 10), net-
work architecture (Sec. 11) and live demo setting (Sec. 12).

7. Visualization of Opacity Maps

As mentioned in Sec. 5.4, the joint regression with Gaus-
sian parameters eliminates the outliers by predicting an ex-
tremely low opacity for the Gaussian points centered at
these positions. The visualization of opacity maps is shown
in Fig. 5. Since the depth prediction works on low resolu-
tion and upsampled to full image resolution, the drastically
changed depth in the margin areas causes ambiguous pre-
dictions (e.g. the front and rear placed legs of the girl and
the crossed arms of the boy in Fig. 5). These ambiguities
lead to rendering noise on novel views when using a point
cloud rendering technique. Thanks to the learned opacity
map, the low opacity values make the outliers invisible in
novel view rendering results, as shown in Fig. 5 (e).

(a) (b) (c) (d) (e)

Figure 5. Visualization of opacity maps. (a) One of the source
view images. (b) The predicted opacity map related to (a). (c)/(d)
The directly projected color/opacity map at novel viewpoint. (e)
Novel view rendering results. A cold color in (b) and (d) represents
an opacity value near 0, while a hot color near 1. The low opacity
values predicted for the outliers make them invisible.
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Figure 6. Visualization of scaling map and the shape of Gaus-
sian points. (a) One of the source view images. (b) The depth of
(a). (c) The scaling map shown in heat map, where a hotter color
represents a larger value. (d) The zoom-in Gaussian points of the
boxed area in (a). The depth and scaling map are normalized.

8. Visualization of Scaling Maps
The visualization of the scaling map (mean of three axes)
in Fig. 6 (c) indicates that the Gaussian points with lower
depth roughly have smaller scales than the distant ones.
However, the scaling property is also impacted by compre-
hensive factors. For example, as shown in Fig. 6 (c) and
(d), fine-grained textures or high-frequency geometries lead
to small-scaled Gaussians.

9. Randomly Placed Camera Setup
We test our method with a randomly placed camera setup
in Fig. 7. The model trained under a uniformly placed 8-
camera setup in Sec. 5 shows a strong generalization ca-
pability to random camera setup with a pitch in range of
[−20◦,+20◦] and yaw in range of [−25◦,+25◦]. However,
rendering additional synthetic data covering more general
camera setups to re-train the model is a better choice for
achieving improved performance in such cases.

(d) Ground Truth(c) Output(b) Source View 2(a) Source View 1
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Figure 7. Result on randomly placed camera setup. (a) and (b)
are the source view images with an extreme pitch and yaw. (c) is
the novel view rendering result. (d) is the novel view ground truth.



10. Run-time Comparison
We compare the run-time of the proposed GPS-Gaussian
with baseline methods. As illustrated in Table 4, the over-
all run-time can be generally divided into two parts which
correlate to the source views and the desired novel view re-
spectively. The source view correlated computation in Flo-
Ren [44] refers to coarse geometry initialization while the
key components, the depth and flow refinement networks,
operate on novel viewpoints. IBRNet [53] uses transform-
ers to aggregate multi-view cues at each sampling point
aggregated to the novel view image plane, which is time-
consuming. ENeRF [17] constructs two cascade cost vol-
umes on the targeted novel viewpoint, then predicts the
novel view depth followed by a depth-guided sampling for
volume rendering. Once the target viewpoint changes, these
methods need to recompute the novel view correlated mod-
ules. However, the computation on source views dominates
the run-time of GPS-Gaussian, which includes binocular
depth estimation and Gaussian parameter map regression.
Given a target viewpoint, it takes only 0.8 ms to render the
3D Gaussians to the desired novel view. This allows us to
render multiple novel views simultaneously, which caters to
a wider range of applications such as holographic displays.
Suppose that n = 10 novel views are required concurrently,
it takes our method T = Tsrc+n×Tnovel = 35ms to syn-
thesize, while 124ms for FloRen and 1261ms for ENeRF.

Table 4. Run-time comparison. We report the run-time correlated
to the source views and each novel view on an RTX 3090 GPU.
All methods take two 1024 × 1024 source images as input. Our
method can render multiple novel views concurrently in real-time.

Methods Source view Novel view (per view)

FloRen [44] 14 ms 11 ms
IBRNet [53] 5 ms 4000 ms
ENeRF [17] 11 ms 125 ms
Ours 27 ms 0.8 ms

11. Network Architecture
As shown in Fig. 8, the network architecture of the proposed
GPS-Gaussian is composed of (1) image encoder, (2) depth
estimator, and (3) Gaussian parameter predictor.
Image Encoder. The image encoder Eimg is applied to both
source images and maps each of them to a set of dense fea-
ture map {fsl }Ss=1 as in Eq. 5. Eimg has a similar architec-
ture to the feature encoder in RAFT-Stereo [19]. We change
the kernel size of the first convolution layer from 7 × 7 to
5×5 and replace all batch normalization with group normal-
ization. Residual blocks and downsampling layers produce
image features in 3 levels at 1/2, 1/4 and 1/8 the input im-
age resolution, with 32, 48 and 96 channels, respectively.
The extracted features are further used to construct the cor-
relation volume and regress the Gaussian parameters.
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Figure 8. Network architecture. The proposed framework takes
a source image as input to regress Gaussian parameter maps.

Depth Estimator. As mentioned in Sec. 4.1, The classic
binocular stereo methods only estimate the depth for ‘ref-
erence view’. while the ‘target view’ feature is only used
to construct the cost volume but is not involved in further
depth estimation or iterative refinement. By making the
image encoder independent from the depth estimator, and
re-indexing the correlation volume C for both lookup pro-
cedures, we realize a compact and parallelized implemen-
tation that results in a decent efficiency increase exceeding
30%. For the refinement module, we set T = 3 considering
the trade-off between the performance and the cost.
Gaussian Parameter Predictor. This module is composed
of a depth encoder Edepth and a U-Net like Gaussian pa-
rameter decoder Dparm. Edepth takes the predicted depth as
input and has an identical architecture to the image encoder.
Image features concatenated with depth features are aggre-
gated to the Gaussian parameter decoder via skip connec-
tions. The decoded pixel-wise Gaussian feature Γ passes
through three specific prediction heads to get rotation map
Mr, scaling map Ms and opacity map Mα, respectively.
Meanwhile, the position map Mp is determined by the pre-
dicted depth map D and the color map Mc directly borrows
from the RGB value of the input image.

12. Live Demo Setting
We present live demos on our project page, in which we
capture source view RGB streams and synthesize novel
views in one system. Due to the memory limit of RTX 3090
GPU, we connect the front 6 cameras (facing human sub-
jects) to the computer, which are uniformly positioned in a
circle of a 2-meter radius. GPS-Gaussian enables real-time
high-quality rendering, even for challenging hairstyles and
human-object or multi-human interactions. For a more in-
depth exploration of our results, please visit our homepage:
shunyuanzheng.github.io/GPS-Gaussian.

shunyuanzheng.github.io/GPS-Gaussian

	. Introduction
	. Related Work
	. Preliminary
	. Method
	. View Selection and Depth Estimation
	. Pixel-wise Gaussian Parameters Prediction
	. Joint Training with Differentiable Rendering

	. Experiments
	. Implementation Details
	. Datasets and Metrics
	. Comparisons with State-of-the-art Methods
	. Ablation Studies

	. Discussion
	. Visualization of Opacity Maps
	. Visualization of Scaling Maps
	. Randomly Placed Camera Setup
	. Run-time Comparison
	. Network Architecture
	. Live Demo Setting



