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1. About the Runtime
On a machine with an Intel 13900k CPU and a Nvidia RTX
4090 GPU, the speed of our proposed method is 67.5 FPS
for 1 iteration, and 22.3 FPS when using 4 iterations.

2. Effect of number of iterations
We find that the performance of our proposed method
saturates after 4 iterations. Therefore, we set the itera-
tion number to 4 for our experiments. We provide a line
graph to show the performance changes of our method and
CATRE [6] during the iteration in Fig. 1 We show that
our proposed method consistently outperforms the baseline
method and saturates after 4 iterations in both figures.

3. Ablation Studies
Refinement with different initial estimations. Apart
from the table provided in the main paper, we visually show
the robustness of our method on different initial estimations
generated from 5 pose estimation methods [2, 5, 8, 11, 13]
with ranging performance. As shown in Fig. 1, our method
keeps improving the performance of the initial estimations,
while CATRE [6] failed when refining the initial estima-
tions from Self-DPDN [5]. Additionally, our method keeps
improving during the iterations, while CATRE’s perfor-
mance starts to decrease after one iteration (see the dashed
lines in Fig. 1).

The effect of CCT. To demonstrate the effect of CCT, we
show a statistics plot of feature distances before and after

*Equal contribution, order by dice rolling.
†The corresponding author.
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Figure 1. Comparison between CATRE and our method on different
initial estimations across different refining iterations. (a) IoU75 perfor-
mance comparison. (b) 5◦2cm performance comparison. Our methods are
shown in solid lines and CATRE’s are in dashed lines. Iteration 0 shows
the performance of the initial estimations.

CCT on objects with different shape complexities of the
CAMERA25 test set. In this experiment, the initial pose
of the shape prior is aligned with the ground truth pose to
guarantee that the observed variations in feature distance
are solely attributable to differences in shape. As shown in
Fig 2, the feature distance between the shape prior and the
input target shrinks significantly after applying CCT.

4. Generalizability test on CAMERA25

More Results. To test the generalizability of our method
when trained on a small dataset and tested on a large dataset,
we randomly sample datasets from the CAMERA25 train-
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Figure 2. Feature distances between the shape prior and the input
point cloud before and after applying the cross-cloud transformation.

ing dataset at different ratios (2%, 4%, and 6%). This yields
training sizes of 5k, 10k, 15k. We show the results of the
generalizability test in Table 1. We observe that our method,
trained only using 2% of the train set, can already outper-
form a fully trained CATRE on all training data. Also, our
performance becomes stable when using 4% of the train set
(see Table 1 [C1, D1]), while CATRE requires additional
training data for better performance. Since our performance
became stable, we did not test on larger data sizes.

Experiment settings: To ensure the distribution of differ-
ent categories in the sampled mini datasets, we control the
image number of each object in the sampled datasets: 1) 5
images per object for the 2% train set, 2) 10 images for the
4% train set, and 3) 15 images for the 6% train set.

Table 1. The generalizability test on the CAMERA25 dataset.
Higher score means better performance. Overall best results are in bold,
and the second-best results are underlined. The training data size is de-
noted as T. Size.

Row Method T. Size IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

A0 CATRE 275k 76.1 75.4 80.3 83.3 89.3

B0 CATRE 5k 63.2 66.4 72.3 79.4 87.4
B1 Ours 5k 77.5 75.4 81.1 83.4 90.0

C0 CATRE 10k 66.5 69.7 75.5 81.8 89.1
C1 Ours 10k 79.2 77.9 84.0 83.8 90.5

D0 CATRE 15k 69.7 73.2 78.8 82.6 89.4
D1 Ours 15k 78.1 78.0 84.1 83.6 90.5

5. Detailed Network Architectures
The network structure of the HS Feature Extractor and the
Pose Error Predictor is shown in Fig. 2 of the main pa-
per. The structure of the Pose Error Predictor for ∆R es-
timation and the ∆t,∆s estimation are identical, we fol-
low the CATRE [6] and use 3 Convolution-1D layers with
permutation before the final layer to generate the pose er-
rors. For the Matrix Net, we follow PointNet [7] first use 3

Convolution-1D layers with [64, 128, 1024] output dimen-
sions and a kernel size of 1 to extract the dense point fea-
tures, then the features going through a maximum pooling
layer and 3 liner layers with [512, 256, fLAT] to generate
the matrix. For the first Matrix Net that generates the adap-
tive affine transformation (LAT) for the input point cloud,
fLAT is 9. For the second Matrix Net, fLAT is 8192, as
it outputs two LATs with the matrix size of R64×64. In
the final structure of the GeoReF, we use two HS-layers to
replace the first two Convolution-1D layers in the second
Matrix Net, which in our experiments, show slightly better
results than without HS-layers (See Table 2 [B0, G0] for
the performance comparison). The structure of the Global
Feature Extractor is shown in Fig. 3, we use 1 layer of HS-
layer and 2 Convolution-1D layers with the output size of
[128, 512, 1024] to extract dense point features, and then ap-
ply maximum pooling to get the global feature. Finally, the
global feature is concatenated with the input features for the
outputs.
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Figure 3. Structure of the global extractor.

6. Performance Comparion on CAMERA25

Table 3 compares the accuracy of our method with the state-
of-the-arts. As discussed in Sec. 4, our performance sta-
bilizes when using 4% of the full train set. Therefore,
we present the results obtained with this training size. As
shown in Table 3, we greatly enhanced the performance of
SPD, resulting in a performance that outperformed state-of-
the-art pose estimation methods. Specifically, we improved
the performance of SPD [8] on IoU75 by 32.7%, 5◦5cm by
25.2%, and 5◦2cm by 23.8%. We also outperform the base-
line CATRE on IoU75 by 3.1%, 5◦5cm by 3.7%, and 5◦2cm
by 2.5%. Additionally, we show our results trained using 5k
images (2%) of the train set, which already outperforms the
state-of-the-art methods.

7. Per-category Performance

7.1. CAMERA25.

We present our per-category object pose refinement perfor-
mance in Table 4. We use SPD [8] as the initial estimation
method and report the performance after 4 refinement itera-
tions. We show that our method largely improved the initial
performance.



Table 2. Ablation studies on REAL275.
Higher score means better performance. Overall best results are in bold. Row’s code in bold means the strategies taken in the final structure.

Row Method IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦

A0 CATRE [6] (baseline) 77.0 43.6 45.8 54.4 61.4 73.1 75.1 58.0

B0 Ours: E0+Cross-Cloud Transformation 79.2 2.2↑ 51.8 8.2↑ 54.4 8.6↑ 60.3 5.9↑ 71.9 10.5↑ 79.4 6.3↑ 81.9 6.8↑ 64.3 6.3↑

C0 A0: PointNet → HS-Encoder 71.0 30.1 41.9 45.9 60.6 70.3 71.9 48.7
C1 A0: PointNet → 3DGCN-Encoder - 28.4 36.0 43.4 - - 68.0 47.7

D0 A0 + prior in ST branch 77.1 45.8 48.0 54.6 63.8 72.5 77.9 59.2

E0 D0: PointNet → HS-layer+LATs 79.4 51.0 52.4 58.6 69.4 77.7 80.4 62.4
E1 B0: No LAT on input points 76.1 39.3 46.6 53.0 65.4 74.8 78.0 58.2
E2 B0: No LATs on features 78.5 48.8 47.4 53.0 67.4 75.0 80.4 57.4
E3 B0: No LAT on the rotation feature 79.8 50.6 50.4 56.2 68.6 76.3 80.2 60.8

F0 E0+ Global Concatenation Fusion 77.7 48.4 47.8 54.5 67.1 75.2 80.1 59.4

G0 B0: No HS-layer in Matrix Net 77.8 50.2 54.1 60.1 70.5 78.0 81.2 63.6

Table 3. Comparison with other methods on CAMERA25.
Higher score means better performance. Overall best results are in bold.
SPD∗ is the implementation results from CATRE, which is similar to the
original SPD results.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [9] 37.0 32.3 40.9 48.2 64.6
DualPoseNet [4] 71.7 64.7 70.7 77.2 84.7
CR-Net [10] 75.0 72.0 76.4 81.0 87.7
SGPA [1] 69.1 70.7 74.5 82.7 88.4
SAR-Net [3] 62.6 66.7 70.9 75.3 80.3
SSP-Pose [12] - 64.7 75.5 - 87.4
RBP-Pose [11] - 73.5 79.6 82.1 89.5
GPV-Pose [2] - 72.1 79.1 - 89.0
HS-Pose [13] - 73.3 80.5 80.4 89.4
SPD∗ [8] 46.9 54.1 58.8 73.9 82.1

SPD∗+CATRE [6] 76.1 75.4 80.3 83.3 89.3
SPD∗+Ours (2%) 77.5 75.4 81.1 83.4 90.0
SPD∗+Ours 79.2 77.9 84.0 83.8 90.5

7.2. REAL275.

We present the per-category object pose refinement results
in Table 5. We use SPD [8] as the initial estimation method
and report the performance after 4 refinement iterations. We
show that our method largely improved the initial perfor-
mance.

8. Additional Qualitative Results
We show additional qualitative results of our method test
on different REAL275 test scenes in Fig. 4 and Fig. 5. We
highlight the performance differences with red arrows.



Table 4. Per-category results of our method on CAMERA25 dataset.

Method Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 88.9 64.5 63.8 82.8 69.2 92.4 97.3 86.8 69.8
SPD+Ours bottle 89.4 73.8 73.8 94.2 74.2 95.1 99.4 98.4 74.2

SPD bowl 95.9 80.6 83.4 83.7 95.8 96.3 96.3 83.7 99.2
SPD+Ours bowl 96.0 94.7 97.9 98.2 99.5 99.8 99.8 98.2 99.6

SPD camera 61.9 4.7 27.3 29.3 72.9 78.6 78.6 29.5 89.8
SPD+Ours camera 81.6 67.7 83.1 87.2 90.8 95.2 95.2 87.2 93.9

SPD can 90.2 87.2 98.1 98.2 99.4 99.6 99.6 98.2 99.6
SPD+Ours can 90.3 89.8 99.9 100.0 99.9 100.0 100.0 100.0 99.9

SPD laptop 93.3 17.7 35.0 41.9 61.0 80.5 84.5 43.7 65.5
SPD+Ours laptop 95.3 81.3 74.0 85.5 77.4 91.8 95.8 89.1 77.9

SPD mug 82.7 24.1 15.5 15.5 44.1 44.1 44.1 15.9 99.6
SPD+Ours mug 89.8 67.7 39.0 39.0 61.0 61.0 61.0 39.4 99.9

Table 5. Per-category results of our method on REAL275 dataset.

Method Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 49.9 13.1 21.6 23.2 69.4 76.0 87.1 35.9 80.7
SPD+Ours bottle 49.8 36.2 64.8 68.0 82.5 88.6 100.0 82.5 89.1

SPD bowl 100.0 77.1 50.5 54.0 75.8 80.3 80.3 54.0 94.7
SPD+Ours bowl 100.0 91.9 91.2 95.6 95.4 100.0 100.0 95.7 95.4

SPD camera 43.4 3.4 0.0 0.0 0.2 0.2 0.2 0.0 34.8
SPD+Ours camera 78.4 12.4 2.1 2.1 17.9 18.8 18.9 2.2 58.3

SPD can 70.0 29.8 37.9 42.7 80.4 91.6 91.6 45.5 87.1
SPD+Ours can 70.3 36.7 75.6 78.6 96.0 99.9 99.9 80.7 96.0

SPD laptop 82.0 35.5 4.6 7.0 24.5 65.3 65.9 7.1 29.1
SPD+Ours laptop 80.8 73.9 67.6 91.8 68.9 94.4 95.6 92.5 69.3

SPD mug 66.5 8.7 0.3 0.3 10.3 10.4 10.4 0.3 85.2
SPD+Ours mug 96.2 59.5 24.8 25.9 70.7 74.8 74.8 25.9 89.9
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Figure 4. More qualitative comparison between the proposed method (column #3) and the baseline method (column #2) use the SPD (column #1) as
the initial estimation. We choose two instances from each scene in REAL275 dataset. We show the ground truth with white lines. Note that the estimated
rotations of symmetric objects (e.g. bowl, bottle, and can) are considered correct if the symmetry axis is aligned.
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Figure 5. More qualitative comparison between the proposed method (column #3) and the baseline method (column #2) use the SPD (column #1) as
the initial estimation. We choose two instances from each scene in REAL275 dataset. We show the ground truth with white lines. Note that the estimated
rotations of symmetric objects (e.g. bowl, bottle, and can) are considered correct if the symmetry axis is aligned.
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