
A. Implementation Detail
We state the implementation details of training and evaluat-
ing models in this section.
Training. We list the hyperparameters we used in pretraining
in Table 1. Note that our learning rate schedule during
training is different from most vision-language models: we
perform a linear warm-up at the start of every generation,
but the long-term trend follows cosine annealing decay.

Hyperparameter Value

optimizer type AdamW
base learning rate 0.0005
weight decay 0.1
β1 0.9
β2 0.98
lr scheduler Cosine Annealing
warmup step 500 for every generation
image resolution 224
max token number 77

Table 1. Common hyperparameters used for IL-CLIP pre-training.

Zero-shot image classification. We represent each class
by its text description. After extracting the image feature
from a target image and text features for all class names, the
category of the image can be predicted by choosing the class
with the maximum cosine similarity score between its text
feature and the image feature. We use the same multiple
prompt types as in CLIP paper [3], and the final predictions
are averaged between prompts.

B. Additional Experiments on Recognition
We supplement the recognition evaluation by doing linear
probing and zero-shot image-text retrieval tasks.
Linear probing. In this evaluation, we classify images by
training a linear network layer on top of extracted vision
features. Following CLIP [3], We train a logistic regression
classifier with L-BFGS optimizer. We set the base learning
rate to be 0.05 with no weight decay. The results are shown
in table 2. From the fact that our model performs equally
well with codebook-CLIP and much better than standard
CLIP, we claim the vision representation trained by iterated
learning is as powerful in recognition as the normally-trained
vision representation.
Zero-shot image-text retrieval. We evaluate all models’
zero-shot retrieval performance on the test set of three
standard benchmarks: MS-COCO [2], Flickr8k [4] and
Flickr30k [4]. The performance is shown in table 3. While
iterated learning slightly downgrades the performance of
Codebook-CLIP, it still maintains a lead over the standard
CLIP model. The performance drop is potentially due to
the fact that the text representation is under-trained under
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CLIP [3] 0.43 0.58 0.80 0.89 0.73 0.80 0.54 0.63 0.45 0.65

C
C

3M Codebook-CLIP [1] 0.47 0.62 0.84 0.90 0.74 0.82 0.54 0.64 0.52 0.68
NegCLIP [5] 0.39 0.56 0.79 0.85 0.72 0.84 0.46 0.55 0.40 0.62
IL-CLIP (Ours) 0.49 0.57 0.80 0.93 0.76 0.82 0.57 0.66 0.49 0.68

C
C

12
M

CLIP [3] 0.60 0.65 0.85 0.95 0.76 0.83 0.72 0.69 0.64 0.74
Codebook-CLIP[1] 0.62 0.71 0.89 0.96 0.80 0.88 0.76 0.76 0.72 0.79
NegCLIP [5] 0.59 0.63 0.82 0.95 0.75 0.84 0.64 0.70 0.61 0.72
IL-CLIP (Ours) 0.62 0.67 0.85 0.97 0.78 0.90 0.79 0.74 0.72 0.79

D
at

aC
om

p CLIP [3] 0.44 0.66 0.85 0.84 0.79 0.82 0.43 0.60 0.52 0.66
Codebook-CLIP [1] 0.47 0.69 0.89 0.87 0.79 0.83 0.46 0.65 0.53 0.69
NegCLIP [5] 0.41 0.60 0.79 0.84 0.76 0.81 0.44 0.58 0.48 0.63
IL-CLIP (Ours) 0.45 0.68 0.87 0.88 0.80 0.83 0.45 0.63 0.53 0.68

Table 2. Evaluation on Linear probing for all model variants.

Pretrain Method
COCO Flickr8k Flickr30k

Mean
IR TR IR TR IR TR

CLIP [3] 0.23 0.28 0.41 0.50 0.39 0.48 0.38

CC3M Codebook-CLIP [1] 0.28 0.35 0.47 0.57 0.46 0.57 0.44
NegCLIP [5] 0.19 0.23 0.35 0.42 0.31 0.38 0.31
IL-CLIP (Ours) 0.28 0.32 0.46 0.57 0.42 0.51 0.42

CLIP [3] 0.39 0.53 0.60 0.75 0.60 0.73 0.60

CC12M Codebook-CLIP [1] 0.45 0.59 0.65 0.81 0.65 0.81 0.66
NegCLIP [5] 0.36 0.48 0.57 0.69 0.56 0.68 0.56
IL-CLIP (Ours) 0.44 0.56 0.63 0.77 0.64 0.76 0.63

CLIP [3] 0.16 0.21 0.24 0.31 0.23 0.32 0.24

DataComp Codebook-CLIP [1] 0.20 0.25 0.26 0.36 0.26 0.35 0.28
NegCLIP [5] 0.13 0.16 0.23 0.29 0.19 0.28 0.21
IL-CLIP (Ours) 0.18 0.22 0.26 0.31 0.24 0.33 0.26

Table 3. Zero-shot image/text retrieval. We report retrieval R@5
scores for in three most commonly used retrieval datasets. IR stands
for image retrieval, TR stands for text retrieval.

the iterated learning framework since the language agent is
dynamically replaced.

C. Pretraining on DataComp dataset
We also pretrain our models on DataComp-10M dataset to
ensure our finding is not specific to any pretraining dataset.
We report the detailed compositionality and image classifi-
cation accuracy in table 6 and 7 respectively. Their linear
probing and image-text retrieval performance are shown
along with other variants of models in table 2 and 3. The
noisiness of unfiltered DataComp-10M turns out to influence
all models’ performance, but the IL-CLIP is still the best
model in compositionality and comparable to Codebook-
CLIP in recognition, which is consistent with the findings in
the main paper.

D. Additional Ablation: Iterated Learning with
Hard Negative Mining

Our proposed Iterated learning algorithm augments the CLIP
training procedure, while NegCLIP augments the CLIP train-
ing objective. In principle, these two approach can work
together and potentially result in a better model. As an ad-
ditional ablation, we study a variant of the CLIP model that
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Table 4. Sampled test cases in compositionality benchmarks and performance comparison. We found our model exhibits better
compositional understanding than standard CLIP in distinguishing compositional hard negatives.

uses both iterated learning and hard negative mining during
training. We train it on the CC3M dataset. From the results
in Table 5, we observe the combination of iterated learning
and negative mining yields a model with the best composi-
tionality performance, but leads to a slight performance drop
for recognition.

Models compositionality classification probing retreival

CLIP 0.28 0.22 0.65 0.38
NegCLIP 0.32 0.21 0.62 0.31
IL-CLIP 0.34 0.24 0.68 0.42

IL-NegCLIP 0.35 0.24 0.67 0.40

Table 5. Iterated learning with hard negative mining.
Color notations: The performance of the target model that com-

bines negative mining and iterated learning.

E. A user study: Comparing Codebook Inter-
pretability

To compare the interpretability of the trained codebook be-
tween IL-CLIP and normal Codebook-CLIP, we conduct a
user study where participant annotates whether randomly
picked codes have semantically grounded meanings. Across
50 binary decisions on whether specific codes have a seman-
tic meaning, our 10 users annotated 44 codes (in average)
to be interpretable in IL-CLIP versus only 39 for codebook-
CLIP.

F. Unbiased Visualization for Trained Code-
book (Sorted by Index)

To unbiasedly show the performance of our trained code-
book, we present a visualization of the foremost codes, orga-
nized in ascending order by their index in Fig. 1 - 2. We find
most of the codes achieve good semantic groundings, and
some of them are interpretable.

G. Qualitative Result of the Models’ Perfor-
mance in Compositional Understanding

In Table 4, we show some qualitative results, including both
image-to-text and text-to-image examples. Due to enhanced
compositional understanding, we observe our model does
better in relationship understanding and counting.



Dataset Method
CREPE-systematicity CREPE-productivity SugarCrepe Cola Winoground

Mean
atom compound replace swap negate add replace swap Txt2Img Txt2Img

DataComp

CLIP [3] 0.33 0.36 0.11 0.20 0.10 0.63 0.62 0.57 0.21 0.10 0.32
Codebook-CLIP [1] 0.34 0.37 0.12 0.21 0.09 0.64 0.64 0.59 0.20 0.07 0.33
NegCLIP [5] 0.32 0.36 0.11 0.24 0.12 0.62 0.63 0.64 0.19 0.11 0.33
IL-CLIP (Ours) 0.34 0.40 0.14 0.23 0.09 0.66 0.66 0.62 0.18 0.14 0.35

Table 6. Evaluation on compositionality benchmarks for models pretrained on DataComp-10M.
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CLIP [3] 0.14 0.31 0.72 0.72 0.32 0.62 0.22 0.12 0.05 0.16 0.15 0.12 0.06 0.12 0.13 0.02 0.17 0.09 0.24

DataComp Codebook-CLIP [1] 0.15 0.36 0.76 0.72 0.38 0.68 0.25 0.14 0.07 0.18 0.18 0.14 0.06 0.14 0.13 0.02 0.19 0.10 0.26
NegCLIP [5] 0.12 0.28 0.67 0.69 0.32 0.59 0.21 0.11 0.04 0.14 0.16 0.12 0.07 0.12 0.14 0.02 0.13 0.07 0.22
IL-CLIP (Ours) 0.14 0.33 0.74 0.74 0.42 0.65 0.24 0.11 0.06 0.16 0.19 0.13 0.08 0.15 0.15 0.02 0.16 0.09 0.26

Table 7. Evaluation of zero-shot image classification with models pretrained on DataComp-10M.
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Figure 1. Codebook visualization: code #1 - #11



Figure 2. Codebook visualization: code #12 - #23
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