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Supplementary Material

Introduction

In the supplementary material, we provide extra discussions
that did not fit in the main paper due to the space limita-
tion, including i) Ablation study on the textual augmenta-
tion described in Sec 3.3; ii) Few-shot classification results
on 8/4/2/1 shots with comparisons with previous methods.

Ablation on Textual Augmentations

As discussed in Sec 3.3, we perform textual augmentations
in two steps: 1) When computing g, we replace the original
template “A photo of [STH]”, with “A photo of
[STH] with [NP]”, thereby enriching the descriptive
content with noun phrases extracted from LLM responses;
ii) We create new LLM prompt templates similar to “In
one sentence, describe the distinctive
appearance of [STH]” through GPT-4 [11], and
average the scores for final prediction.

We show ablation study results in Tab. 1, with TA1 and
TA2 referring to the step i) and ii) mentioned above. Results
show that, even without textual augmentations, LLaMP still
outperforms PSRC, the previous state-of-the-art, by 0.68%
on base accuracy, 0.94% on novel accuracy and 0.83% on
the harmonic mean. Moreover, we observe that both aug-
mentation steps further improve the performance of LLaMP.
More specifically, TA1 improves the HM by 0.35% while
TA2 brings in another boost of 0.12%.

Method TAl TA2 ‘ Base Novel ‘ HM
PSRC [7] | 8426  76.10 | 79.97

84.94 77.04 | 80.80
LLaMP v | 8478 7731 | 80.86

v 85.16 77.50 | 81.15
v v | 8516 77.71 | 81.27

Table 1. Ablation study on textual augmentations.

Few-shot Classification

In addition to the 16-shot classification result reported in
the main paper, we present few-shot classification results
with with 8/4/2/1 numbers of shots in Tab. 2 and compare
LLaMP against previous baseline models.

Results in Tab. 2 show that LLaMP outperforms previ-
ous SOTAs under all settings, on average of all 11 bench-
marks, with 0.88% improvement with 8 shots. In particular,

we observe that LLaMP surpasses PSRC [7] consistently on
FGVCAircraft (Aircraft) [9] and Food [1] with all numbers
of shots. Such observation aligns with our argument in the
main paper that the knowledge from LLMs provides richer
semantic information for fine-grained classification.
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8-Shot Classification
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CLIP [13] 7447 6223 9341 7836 73.67 96.10 79.79 3935 69.08 63.46 84.43 79.34
CoOp [17] 7698 70.63 94.37 91.27 7930 94.97 82.67 39.00 71.53 64.77 78.07 80.20
CoCoOp [16] 72.96 70.63 95.04 93.45 70.44 84.30 86.97 26.61 70.84 58.89 6821 77.14
MaPLe [6]  78.89 7030 95.20 92.57 79.47 95.80 83.60 42.00 73.23 66.50 87.73 81.37
PSRC [7] 80.69 7233 95.67 93.50 80.97 96.27 86.90 43.27 75.73 69.87 88.80 84.30

LLaMP 81.57 7230 96.57 93.69 82.15 96.20 87.39 47.48 75.18 71.14 91.15 84.06

4-Shot Classification
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CLIP [13] 68.01 54.85 92.05 71.17 63.38 92.02 73.19 3233 63.00 5571 77.09 73.28
CoOp [17]  74.02 68.73 9440 92.57 74.47 92.17 8447 30.83 69.97 5870 70.80 77.10
CoCoOp [16] 71.21 70.39 9498 92.81 69.39 78.40 86.88 24.79 70.21 55.04 6556 74.82
MaPLe [6]  75.37 67.70 94.43 91.90 7530 92.67 81.77 34.87 70.67 61.00 84.50 78.47
PSRC [7] 78.35 71.07 95.27 9343 7713 93.87 86.17 37.47 74.00 6553 86.30 81.57

LLaMP 78.83 71.37 95.84 93.61 76.79 93.96 87.17 40.02 74.05 66.37 86.16 81.80

2-Shot Classification
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CLIP [13] 57.98 44.88 89.01 58.37 50.28 85.07 61.51 26.41 53.70 40.76 61.98 65.78
CoOp [17]  70.65 67.07 93.07 89.80 70.50 87.33 84.40 2620 66.53 53.60 65.17 73.43
CoCoOp [16] 67.65 69.78 94.82 92.64 68.37 75.79 86.22 15.06 69.03 52.17 46.74 73.51
MaPLe [6]  72.58 65.10 93.97 90.87 71.60 88.93 81.47 3090 67.10 5550 7830 74.60
PSRC [7] 7529 69.77 94.53 9250 73.40 91.17 85.70 31.70 71.60 59.97 79.37 78.50

LLaMP 75.89 70.12 95.66 92.75 7220 89.16 86.33 33.41 72.64 61.29 81.71 79.56
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CLIP [13] 4583 32.13 79.88 44.06 35.66 69.74 4396 19.61 41.58 3459 4923 53.66
CoOp [17]  67.56 66.33 92.60 90.37 67.43 77.53 84.33 2137 66.77 5023 5493 71.23
CoCoOp [16] 66.79 69.43 93.83 91.27 67.22 72.08 85.65 12.68 68.33 4854 5533 70.30
MaPLe [6]  69.27 62.67 92.57 89.10 66.60 83.30 80.50 26.73 64.77 52.13 71.80 71.83
PSRC [7] 72.32 68.13 93.67 92.00 69.40 85.93 84.87 27.67 69.67 5623 73.13 74.80

LLaMP 7242 69.12 94.59 9191 70.02 84.03 85.83 30.39 69.69 5498 7036 75.72

Table 2. Few shot classification results with 8/4/2/1 shots. All numbers, excepts ours, are obtained from [7].
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