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In this document, we start with the ablation study in
Appendix A to demonstrate the effectiveness of the pro-
posed key modules as a complement. Following this, we
conduct a more comprehensive analysis of the qualitative
and quantitative experiments based on Section 4 and pro-
vide additional experimental results in Appendix B. Spe-
cific implementation details and dataset information are
subsequently presented in Appendix C for reproduction. Fi-
nally, we showcase further applications of LiDAR4D in
Appendix D, thereby highlighting its versatility, flexibility,
and great potential.

A. Ablation Study
The advantages of our method in comparison to LiDAR-
NeRF [39] are illustrated in Figures 4 to 6, which cor-
responds to the key modules of LiDAR4D, i.e., dynamic
reconstruction, hybrid representation, and ray-drop refine-
ment. In order to provide a more rigorous demonstration of
the efficacy of our method, we perform the ablation study
for each module and present quantitative results in Table S4.

Figure S9. Qualitative comparison for the geometric regular-
ization of CD loss.

The results in the first row represent the basic version
of LiDAR4D with only hash grid representation, which is
similar to LiDAR-NeRF. The introduction of the hybrid
representation (H.) significantly enhances the reconstruc-
tion quality, especially for the point cloud and depth met-
rics in Row 2. Subsequently, we further adopted time-
conditioned dynamic-part representations (DT .) and flow-
constrained temporal feature aggregation (DF .), which no-
tably strengthened the capability of dynamic reconstruction
in Row 3&4. Among them, the incorporation of CD loss as
geometric regularization benefits the optimization of flow
MLP and leads to more accurate results for dynamic ob-
jects, as shown in Figure S9. Ultimately, the global opti-
mization of ray-drop (R.) based on U-Net assists LiDAR4D
in achieving SOTA performance in the last row.

B. Additional Analysis and Experiments
B.1. Quantitative and Qualitative Comparison

Static Scenes. As shown in Figure S12, traditional explicit
reconstruction methods such as LiDARsim [25] convert

Figure S10. Qualitative novel view LiDAR point cloud synthe-
sis results on NuScenes dataset.

point cloud scenes into mesh representations but struggle
to accurately reconstruct object details in large-scale scenes
(Row 2). We additionally adopt the state-of-the-art surface
reconstruction algorithm NKSR [15] upon LiDARsim to
improve the reconstruction quality. Nevertheless, the novel-
view results are still significantly different from the ground
truth (Row 3). Furthermore, it is unable to establish the cor-
relation between intensity and viewpoint. PC-Gen [19] re-
constructs directly based on the point cloud, while the gen-
erated results are heavily affected by noise (Row 4). On the
contrary, the implicit reconstruction method like LiDAR-
NeRF [39] (Row 5) alleviates the challenges above and
achieves a substantial lead. Our LiDAR4D further surpasses
the previous approaches, especially in reconstruction details
such as vehicle shape and window reflections (Row 6). The
quantitative results illustrated in Table 3 demonstrate a sim-
ilar trend. Compared to LiDAR-NeRF, the hybrid represen-
tation and ray-drop refinement of LiDAR4D lead to a 12.0%
and 13.7% drop in the depth and intensity RMSE metrics.
Dynamic Scenes. Explicit reconstruction methods fail
completely in dynamic scenes (Figures 7, 8, S13 and S14),
which yields extremely poor validation results (Tables 1
and 2) due to the stacking of dynamic objects. In contrast,
implicit reconstruction methods largely avoid the artifacts
and noise of dynamic objects. However, existing methods
like LiDAR-NeRF are designed for static scenes, resulting
in the obscureness or absence of moving objects (Figures 6
and S10). Although D-NeRF [32] incorporates a deforma-
tion field, its impact is quite limited. The primary issue lies
in the lack of constraints and the difficulty of establishing
long-distance correspondence. Moreover, the state-of-the-
art dynamic methods TiNeuVox [9] and K-planes [12] are
limited by their representation resolution, which makes it
difficult to reconstruct details in large-scale scenes, such as



H. DT . DF . R.
Point Cloud Depth Intensity

CD↓ F-score↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑ RMSE↓ MedAE↓ LPIPS↓ SSIM↑ PSNR↑
✗ ✗ ✗ ✗ 0.1840 0.8979 4.0602 0.0639 0.2692 0.6483 26.1957 0.1398 0.0431 0.2969 0.3829 17.2018

✓ ✗ ✗ ✗ 0.1429 0.9116 3.9702 0.0499 0.2586 0.6645 26.3647 0.1368 0.0411 0.2760 0.4036 17.3675

✓ ✓ ✗ ✗ 0.1213 0.9221 3.6947 0.0448 0.2397 0.7027 27.0285 0.1286 0.0368 0.2688 0.4553 17.8999

✓ ✓ ✓ ✗ 0.1187 0.9260 3.6745 0.0425 0.2130 0.7104 27.1009 0.1281 0.0359 0.2426 0.4726 17.9394

✓ ✓ ✓ ✓ 0.1089 0.9272 3.5256 0.0404 0.1051 0.7647 27.4767 0.1195 0.0327 0.1845 0.5304 18.5561

Table S4. Ablation study on KITTI-360 Dataset. H: hybrid representation, DT : time-conditioned dynamic-part representations, DF :
flow-constrained temporal feature aggregation, R: global ray-drop refinement.

w/ GT Mask
Depth Intensity

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

S.
LiDAR-NeRF 0.025 0.971 34.808 0.146 0.667 19.935

Ours 0.024 0.974 36.303 0.145 0.704 20.677

D.
LiDAR-NeRF 0.126 0.843 29.361 0.192 0.583 18.891

Ours 0.019 0.981 36.222 0.137 0.715 21.407

Table S5. Experiments with GT ray-drop mask on KITTI-360
Dataset. S: Static sequences, D: Dynamic sequences.

vehicle and pedestrian geometry (Row 7&8 in Figure 8),
as well as high-frequency details in intensity (Row 7&8 in
Figure S13). Our proposed LiDAR4D instead accomplishes
geometric-aware and time-consistent dynamic reconstruc-
tion through 4D hybrid representation and flow-constrained
temporal feature aggregation. As shown in Tables 1 and 2,
LiDAR4D ranks first across almost all metrics. A consid-
erable visualization intuitively exhibits the superior genera-
tion quality of LiDAR4D, encompassing both long-distance
moving vehicles and small bicyclists (the last row in Fig-
ures 8 and S14).

Difference on Ray-drop. Existing methods differ in ray-
drop modeling. PCGen [19] employs MLP to estimate
ray-drop, while LiDARsim [25] adopts U-Net, which takes
depth and intensity values as input. In contrast, LiDAR4D
predicts the ray drop probability of each point in space
through neural fields and integrates them along the ray as
the inputs of U-Net. Then, the U-Net is optimized in run-
time to refine the prediction for individual scenarios. As
can be seen from Figure S12, the MLP-based method may
handle high-frequency details, but it also results in noisy
prediction (Row 4&5). The U-Net-based method preserves
global patterns better (Row 2&3) and consequently achieves
superior results in LPIPS [45] metrics in Tables 1 and 3 in
particular. However, this data-driven paradigm is dependent
on the distribution of the training samples and is difficult to
predict accurately in detail, i.e., the vehicle windows. Li-
DAR4D combines the advantages of both to achieve more
realistic ray-drop modeling, as shown in Figure 5.

Figure S11. Influence of maximum representation resolution.

B.2. Experiments without Ray-drop Effect

In order to eliminate the effect of ray-drop on the evalu-
ation metrics, we conduct supplementary experiments by
only calculating the results on rays that have valid values.
In other words, we apply the ground-truth ray-drop mask to
all results for reconstruction quality evaluation. As shown
in Table S5, our method outperforms LiDAR-NeRF [39]
in both static and dynamic scenarios, especially by a large
margin in dynamic sequences.

B.3. Experiments on Resolution

Increasing the resolution of the representations is important
for large-scale scenarios. In comparison to dense grids and
planar features, hash grids can substantially raise the resolu-
tion and thus improve the accuracy of reconstruction, which
has been verified in previous experiments. To determine the
maximum resolution of hash grids, we further conducted
additional experiments. As illustrated in Figure S11, in-
creasing the resolution continuously alleviates the error of
depth and intensity reconstruction. Considering the limited
capacity, an extremely high resolution may lead to unfavor-
able effects, such as the degradation of point cloud met-
rics. Finally, we select the resolution of 215, which can
adequately meet the requirements of large-scale scene re-
construction.



Figure S12. Qualitative comparison on KITTI-360 Static Scene Sequences.

KITTI-360 NuScenes

Static

Seq 1538-1601

Dynamic

Seq 450-500
Seq 1728-1791
Seq 1908-1971 Seq 1250-1300

(ego-vehicle stationary)Seq 3353-3416

Dynamic

Seq 2350-2400
Seq 1600-1650

Seq 4950-5000
Seq 8120-8170

Seq 2200-2250
Seq 10200-10250
Seq 10750-10800

Seq 3180-3230
Seq 11400-11450

Table S6. Scene sequences of KITTI-360 and NuScenes.

C. Implementation Details

C.1. Dataset Visualization

As shown in Figure S17, we selected 6 representative dy-
namic scene sequences on KITTI-360. Each scene spans
a distance of about 100–200 m and contains vehicles or
pedestrians moving over long distances. Following the
setup of LiDAR-NeRF [39], the same experiments were

conducted on the original 4 static scene sequences (Fig-
ure S18). The height and width of the range images are
66 and 1030. For the NuScenes dataset, we chose 5 dy-
namic sequences illustrated in Figure S19, including an ego-
vehicle stationary scene (Column 2) which can be viewed as
a special case of novel temporal view synthesis. The size of
the range images is set to 32 × 1080. The substantial vari-
ations between scenarios serve as a more accurate indicator
of the reconstruction capabilities of current methods. The
index number of scene sequences can be found in Table S6.

C.2. LiDAR4D

Hybrid representation. For the multi-planar features, the
base resolution of the spatial plane is set to 64. The multi-
scale structure has 4 levels, each doubling the spatial reso-
lution and output 8-dimension feature, which finally yields
a 32-dimension feature for both static and dynamic parts.
The spatial resolution of hash grids ranges from 512 (the
maximum resolution of multi-planar features) to 215. There
are a total of 8 levels of hash grids, each level outputs 4-
dimension features, and then the same 32-dimension fea-



Figure S13. Qualitative comparison for LiDAR intensity reconstruction and synthesis. Dynamic vehicles are marked with red boxes.

tures are obtained. The grid is mapped to a hash table of
219. All the temporal resolution is fixed to 25. Ultimately,
the static and dynamic features of the planes and hash grids
compose a 128-dimensional latent vector.

Dynamic modules. Beyond time-conditioned multi-planar
and hash grid features for dynamic reconstruction, we addi-
tionally introduce flow MLP to aggregate dynamic features

for temporal consistency. This coordinate-based MLP is an
8-layer neural field with 128 units per layer. Eventually, the
dynamic features of adjacent spatio-temportal points are ag-
gregated by weighted averaging. We incorporate the cham-
fer distance loss based on point clouds to effectively con-
strain the optimization of the flow MLP. It encourages the
two adjacent frames of the point cloud transformed by the



Figure S14. Qualitative comparison for LiDAR depth reconstruction and synthesis. Dynamic vehicles are marked with red boxes.

predicted scene flow to be as consistent as possible. Ac-
cording to the training process, we randomly select one mo-
ment in each epoch for optimization. In addition, we pre-
process the point cloud by removing ground points using
RANSAC [10] and further limiting the maximum distance
within 50 meters to mitigate the adverse effect of noise.

Neural LiDAR fields. The aggregated time-conditioned

and flow-constrained dynamic features are finally fed into
a 2-layer 64-dimensional MLP, which outputs the 15-
dimensional geometric feature and density value. The ge-
ometric feature with the 12-band frequency-encoded view-
point is utilized to predict intensity values and ray-drop
probabilities by two independent 3-layer 64-dimensional
MLPs, respectively. The expectation of the density in-



Figure S15. Novel view point cloud synthesis with different LiDAR configurations.

Figure S16. Increase LiDAR beams to densify the point cloud on NuScenes dataset.

tegrated along the ray serves as the depth value. Then,
these initial predictions are combined as inputs to U-Net
for global ray-drop optimization. The final predictions are
multiplied by the ray-drop mask for synthesis.

Optimization details. The initial learning rate is set to
0.01 for the multi-planar and hash grids, and 0.001 for other
MLP networks. The learning rate decreases exponentially
during iterations, with a final decay coefficient of 0.1. The
depth-loss weight λα is 1, the intensity weight λβ is 0.1,
the ray-drop weight λγ is 0.01, and the flow weight λη is
0.01. During refinement, the weight λr is set to 1 with other
loss weights set to 0. The U-Net weights are randomly ini-
tialized and optimized with a learning rate of 0.001 by the
Adam [17] optimizer. Other unmentioned optimization de-
tails are basically in line with LiDAR-NeRF [39].

Efficiency. According to experiments conducted on a single
NVIDIA GeForce RTX 4090 GPU, LiDAR4D takes about
2 hours to complete the optimization of each scenario.

D. Applications
At last, we showcase the application of LiDAR4D for novel-
view LiDAR synthesis with different sensor configurations.
As illustrated in Figure S15, we can freely manipulate the
sensor’s pose, e.g., moving up and down or horizontal trans-
lation. It can be observed that the LiDAR point clouds un-
der different sensor poses vary significantly, and the accu-
rate recovery of the scene and objects further demonstrates
the high-fidelity synthesis of LiDAR4D. In addition, we can
adjust LiDAR configurations, such as increasing the vertical
field of view, to obtain a wider range of sensing results on
the top right of Figure S15. Alternately, the modification of
LiDAR beams realizes the conversion between sparse and
dense point clouds. As shown on the bottom right of Fig-
ure S15, we transfer the LiDAR configuration of KITTI-360
to that of NuScenes, realizing the crossing of the domain
gap. Also as shown in Figure S16, we can also densify
the sparse Nuscenes data, which will also be beneficial for
downstream tasks. All of this reveals the adaptability and
enormous potential of LiDAR4D.



Figure S17. Visualization for the dynamic sequences of KITTI-360 dataset.

Figure S18. Visualization for the static sequences of KITTI-360 dataset.

Figure S19. Visualization for the dynamic sequences of NuScenes dataset.


