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Algorithm 1: Pseudo code of fine-grained Net.
Input: Video sequence V, detector D, physical point tracker

Trp, tracking stride S
Output: Object tracks To

1 T coarse
o , T fine

o ← ∅, ∅ # Initialized object tracks

2 for Ik in V do
3 Dk ← D(Ik)
4 T coarse

o ← Trcoarse
o (Dk, T coarse

o )
5 Is,Ds ← Is ∪ {Ik},Ds ∪ {Dk}
6 N ← number of images in Is
7 if N == S then
8 /* Step 1: Fine-grained sampling */
9 Q ← Sampling(T coarse

o )
10 Tp ← Trp(Is,Q)
11 /* Step 2: Fine-grained matching */
12 for Di in Ds do
13 T fine

o ← matching(Di, T fine
o , Tp)

14 end

15 Is,Ds = {Ik}, {Dk}
16 T coarse

o ← T fine
o

17 To ← T fine
o

18 end

19 end

20 Return: To

In the supplementary materials, we provide a detailed
exposition of the NetTrack pipeline in Sec. 7, statistics
and elaborate dynamicity descriptions of the proposed BFT
benchmark in Sec. 8, as well as a more comprehensive in-
troduction to experimental details and more enriched exper-
imental results in Sec. 9. Additionally, we also demonstrate
three potential application scenarios of NetTrack in Sec. 10.

7. Method Details

In contrast to previous methods [4, 7, 71] that utilize coarse-
grained representations, NetTrack introduces a more fine-
grained Net by incorporating fine-grained object informa-
tion for tracking. The brief workflow of the proposed fine-
grained Net is illustrated in Algorithm 1. Specifically,
after initialization, NetTrack employs a simple and fast
coarse tracker to predict the coarse-grained object trajec-
tory T coarse

o . Subsequently, when the frame count reaches a
tracking stride S, NetTrack performs fine-grained sampling
within this stride, obtaining the points of interest (POIs) Q
and their corresponding trajectories. In fine-grained track-
ing, the fine-grained object trajectory is obtained by match-
ing with the trajectories of POIs and the coarse-grained ob-
ject trajectory, which is then used as the output.
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Figure 7. Orders, families, genera, and species of objects in the
BFT dataset, showcasing the diversity of the dataset.

8. Benchmark Details

8.1. Statistics

Fig. 1-c and Fig. 4 illustrate the geographical distribution of
diverse scenes and environments in the dataset. The varied
categories of objects in the BFT dataset also contribute to
its diversity, as demonstrated in Fig. 7, which includes 13
orders, 16 families, 19 genera, and 22 species.

8.2. Dynamicity

The dynamicity comparison between BFT and some open-
world MOT datasets is shown in Fig. 4-b,c, Fig. 8 further
incorporates a comparison with closed-set datasets [9, 49]
and involves additional attributes to validate the dynamicity
of open-world MOT compared to closed-set datasets, with
particular emphasis on the pronounced dynamicity in BFT.
All vertical axes in Fig. 8 represent frequency.
IOU The Intersection over Union (IOU) of the same ob-
ject in adjacent frames can reflect the degree of geometric
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Figure 8. Dynamicity comparison between BFT and other datasets
on 4 attributes. BFT exhibits stronger dynamicity.

changes of the object, thus describing its dynamicity. Ad-
jacent IOU is calculated by IOU(bt,bt−1) = |bt∩bt−1|

|bt∪bt−1| ,
where b is the bounding box of an object, and t denotes
frame index. In the first line of Fig. 8, the interval of IOU is
0.1. The lower IOU of BFT indicates its stronger dynamic-
ity in the comparison.
Aspect ratio change Aspect ratio change (ARC) of the
same object across adjacent frames reflects the object de-
formation in the horizontal and vertical directions, which is
formulated as ARC(bt,bt−1) = wt−1/ht−1

wt/ht . w and h are
the width and height of the bounding boxes, respectively.
In the second line of Fig. 8, the interval of ARC is 0.2. The
further the ARC deviates from 1, the more pronounced the
dynamicity of the objects, indicating a greater significance
of BFT’s dynamicity.
Area change Area change (AC) of the object boxes be-
tween adjacent frames reflects the overall size variation of
the object. AC is calculated as AC(bt,bt−1) = wt−1ht−1

wtht .
In the third line of Fig. 8, the interval of AC is 0.2. BFT’s
dynamicity is more significant as AC deviates further from
1, resulting in a more pronounced dynamicity of objects.
Object motion The displacement of the center point of
the object box between adjacent frames reflects the ve-
locity of the object motion (OM). OM is formulated as
OM(bt,bt−1) = |xt

c − xt−1
c | + |ytc − yt−1

c |. xc and yc
are the horizontal and vertical coordinates of the center of
the bounding box, respectively. In the last line of Fig. 8, the
interval of OM is 20 pixels. In the BFT dataset, the over-
all OM is higher compared to other datasets, indicating a

higher level of dynamicity within BFT.

8.3. Visualization

The visualization of representative videos contained in the
BFT dataset is shown in Fig. 9, which covers all orders of
birds in the dataset to demonstrate the diversity of data and
the dynamicity of tracking objects.

9. Experiment Details
9.1. Dataset statistics

TAO There are 295 overlapping classes between the 833
object classes in TAO [8] validation set and LVIS [20]. Out
of these, 35 classes are considered rare and are designated
as novel classes following OVTrack [34]. For evaluation
purposes, there are a total of 109,963 annotations across 988
validation sequences, with 2,835 annotations belonging to
novel classes.
TAO-OW TAO-OW [42] validation set considers 52
COCO [36] classes as known, which consist of 87,358 dis-
tinct object tracks. In contrast, 209 classes that are not
present in COCO are regarded as unknown, comprising
20,522 distinct object tracks.
AnimalTrack and GMOT-40 Following open-world set-
tings [42], the known and unknown classes of Animal-
Track [69] test set and GMOT-40 [1] are divided. In the An-
imalTrack benchmark, the known classes are horse and ze-
bra, and the unknown classes are chicken, deer, pig, goose,
duck, dolphin, rabbit, and penguin. In the GMOT-40 bench-
mark, the known classes are airplane, bird, boat, sheep,
car, and person, and the unknown classes are helicopter,
billiard, lantern, tennis, balloon, fish, bee, duck, penguin,
goat, wolf, and ant.

9.2. Metric details

OWTA The open-world tracking accuracy (OWTA) [42]
consists of the detection recall (DetRe) and association ac-
curacy (AssA). With a localization threshold α, the OWTA
metric is calculated as OWTAα =

√
DetReα · AssAα.

Specifically, DetRe is evaluated as DetReα = TPα

TPα+FNα
,

where the true positive (TP) and false negative (FP) are
considered while false positives (FP) are not penalized. In
AssA, the TP associations (TPA), FP associations (FPA),
and FN associations (FNA) are incorporated into the calcu-
lation as AssAα = 1

TPα

∑
c∈TPα

A(c), where A(c) is calu-

cated as A(c) = TPAα(c)
TPAα(c)+FPAα(c)+FNAα(c) .

TETA The tracking-every-thing accuracy (TETA) [33]
consists of three components, the localization accuracy
(LocA), classification accuracy (ClsA), and association
accuracy (AssocA). TETA is calculated as TETA =
LocA+AssocA+ClsA

3 . LocA is evaluated as LocA = TP
TP+FP+FN ,

and AssocA is derived in the same manner as AssA in
OWTA. For classification, ClsA is calculated as ClsA =
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Figure 9. Order-wise visualization of the BFT dataset, showcasing the diversity of the dataset and the dynamicity of tracking objects.



I am interested in a fast-flying flock of "bird"s.
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Figure 10. Qualitative tracking results of NetTrack. a Scenarios involving highly dynamic objects and densely packed objects in open-
world settings. b Understanding dynamic scenes and objects under referring expression comprehension conditions and domain-specific
knowledge aided by embedded descriptors.
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Figure 11. Qualitative tracking results to validate the robustness of NetTrack under various prompts. a Describing the objects of interest
from the perspectives of color and shape. b Describing the objects from the perspectives of appearance and behavior.

TPC
TPC+FPC+FNC , where TP classification (TPC), FP classifica-
tion (FPC), and FN classification (FNC) are concerned.

HOTA, MOTA, and IDF1 These three metrics are for
closed-set MOT and serve as a reference. Higher Order
Tracking Accuracy (HOTA) [44] is calculated as HOTAα =√

DetAα · AssAα. where the detection accuracy (DetA)
is derived in the same manner as LocA in TETA. Mul-
tiple object tracking accuracy (MOTA) [3] measures the
detection errors of FNs and FPs, as well as the associa-
tion error of identification switch (IDSW), which is derived
as MOTA = 1 − FN+FP+IDSW

gtDet , where gtDet refers to the
number of groundtruth detections. IDF1 [56] is the ratio
of correctly identified detections over the average number
of ground-truth and computed detections, which balances
identification precision and recall through harmonic mean
and is calculated as IDF1 = 2IDTP

2IDTP+IDFP+IDFN , where IDTP,
IDFP, and IDFN refer to true positive, false positive, and
false negative of identification, respectively.

0.5
0.6
0.7
0.8
0.9
1.0

OVTrack NetTrack (ours)

Figure 12. LocA comparison between CLIP-based OVTrack and
the proposed NetTrack on BFT benchmark. Each data point refers
to a corresponding image sequence.

9.3. Additional ablation studies

Comparison with CLIP-based pre-training Compared to
the previous coarse-grained CLIP [54]-based method [34],
the proposed fine-grained object-text correspondence
demonstrates better capability in localizing dynamic ob-
jects. As depicted in Fig. 12, each data point represents the
performance of LocA in a sequence from the BFT dataset.
Due to the excessive introduction of false positive samples
by the compared method, the association accuracy on dy-
namic targets is low (16.5) and thus not included in the com-
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Figure 13. D. Re. performance with different numbers of POIs.
More POIs typically bring better performance and heavier com-
putational burden. NetTrack aims to realize a trade-off between
performance and efficiency.
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Figure 14. Order-wise performance comparison. NetTrack ex-
hibits stronger generalization ability on diverse categories.

prehensive comparison. This comparison validates the ap-
plicability of the introduced fine-grained object-text corre-
spondence to track highly dynamic objects.
Number of POIs Assigning excessive POIs to each poten-
tial object can lead to more robust performance, particularly
in the ability to discover potential objects. However, it also
results in a higher computational burden. Fig. 13 illustrates
the relationship between detection recall and the number of
POIs assigned to each object. Each specific POI count is
decomposed into grids corresponding to different aspect ra-
tios, e.g., 12 POIs can be decomposed into 3×4, 4×3, 2×6,
and 6×2 grids, resulting in 4 data points. The aspect ratio of
the grid is constrained within the range of [ 13 , 3]. When the
number of POIs exceeds 9, the performance improvement
becomes marginal. Therefore, the default number of POIs
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Figure 15. Potential applications of NetTrack. a Video editing
with embedded image generator, e.g., stable diffusion [57]. b Eco-
logical inspection for behavioral analysis, e.g., obtaining 3D tra-
jectories of bird flocks through multi-view tracking results and 3D
assignments with settings from [37].

is set to 9, corresponding to a 3×3 grid.
Order-wise performance Fig. 14 categorizes the test
videos into the 13 orders included in the dataset and inves-
tigates the performance of the tracker on each order sepa-
rately. NetTrack outperforms other SOTA trackers [4, 5, 7,
71] on most orders, and the performance gap is not signifi-
cant for different orders, which confirms its strong general-
ization ability.

9.4. Qualitative results

Tracking dynamic and dense objects Tracking dynamic
and numerous objects in an open-world environment poses
significant challenges. Fig. 10-a illustrates NetTrack’s per-
formance in tracking dynamic and dense objects across
three scenarios, including fast-moving and numerous flocks
of birds and bees, as well as highly deformable objects like
leopards and antelope. Despite these challenges, NetTrack
demonstrates excellent robustness.
Referring expression comprehension The understanding
of dynamic scenes in open-world environments is crucial



for the practical application of trackers in MOT. Fig. 10-b
illustrates three scenarios: continuously understanding and
tracking the tallest buildings, tracking constantly deforming
Transformers, and learning professional knowledge through
an embedded descriptor [6]. NetTrack demonstrates its abil-
ity to comprehend dynamic scenes and its potential value in
practical applications.
Robustness to various prompts In practical applications,
the user’s prompt input may be biased due to different fo-
cuses, making it important for the tracker to have robust
performance with diverse prompts. Fig. 11 demonstrates
scenarios where the object of interest remains the same, but
two different prompts are given. In scenario a, prompts fo-
cus on the color and height of the robot, respectively, while
in scenario b, prompts focus on the category of the character
and the ongoing action. Faced with diverse prompts, Net-
Track is able to maintain robust performance, confirming its
potential in practical applications.

10. Applications
In addition to the use of embedded descriptors (e.g., large
language models [6, 52]) to understand domain-specific
knowledge as shown in Fig. 10-b, Fig. 15 also demonstrates
two other potential applications of NetTrack. In Fig. 15-a,
an embedded image generator performs inpainting on the
objects of interest for video editing. The tracker first lo-
cates the objects of interest and then uses the image gener-
ator (stable diffusion [57] in this example) to inpaint on the
area of interest, achieving the desired video editing effect.
Furthermore, in Fig. 15-b, due to NetTrack’s use of fine-
grained representations of objects, even small and dynamic
objects can be tracked by point tracking, enabling the ac-
quisition of three-dimensional (3D) trajectories for ecologi-
cal inspection, such as bird flight trajectories through multi-
view tracking results and 3D assignment. The data and ex-
perimental settings for ecological inspection in Fig. 15 are
sourced from [37]. It is worth mentioning that these are
just brief descriptions of some potential applications of Net-
Track. Due to its strong generalization ability, better inte-
gration with foundation models will lead to even broader
and more practical application value.


