OHTA: One-shot Hand Avatar via Data-driven Implicit Priors

Supplementary Material

In the supplemental material, we provide:
§ A:Implementation Details.

§ B: More Experiments and Results.

§ C: Discussions.

§ D: More Qualitative Results.

A. Implementation Details
A.1. Spatial Interpolation

We uniformly sample N} anchor points P} on the input
mesh and represent them with barycentric coordinates for
each resolution, where k € {1,..., K} denotes the resolu-
tion level. The sampled barycentric coordinates are fixed
after the sampling, which means the sampling for each res-
olution is only conducted once for obtaining the fixed point
encodings Ej. That means that P, are 3D points represent-
ing the location of Ej.

For query points q, we conduct spatial interpolation to
acquire the queried encoding of this resolution:

Q. = interp(q, Ey). 9]

Fig. A depicts the spatial interpolation process. Specifi-
cally, we first extract the encodings of N™ neighbor points
K(Ei) € RN"XNXN® of P, where K denotes k-nearest
neighbors. Then, we perform a weighted average with the
inverse Euclidean distances of those points to the query
point as the weights (values indicated by the line colors in
Fig. A) to acquire the queried encoding of this resolution
Q. € RNV*XN® (j.e. the features of the red point in Fig. A).

Ray Casting

The darker of the line colors
indicates the larger the weights.

Mesh Scaffold

Spatial Interpolation

Figure A. Illustration of spatial interpolation for a level of resolu-
tion.

Furthermore, to illustrate the impact of different resolu-
tions on spatial interpolation, we show the anchor points
P} used in multi-resolution fields at different resolutions
in Fig. B. The light red area in the figure indicates the region
used for interpolation to obtain Q. For more discussion on
multi-resolution, please refer to Sec. B.
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Figure B. [llustration of P, in different level of resolutions. The
light red area in the figure indicates the region used for spatial
interpolation for a query point.

A.2. Network Structure

Architecture. For shape fitting, M4y consists of 4 lay-
ers with a hidden dimension of 128. For multi-resolution
fields, M}, contains 4 layers with a hidden dimension of
256, and M ¢, contains 3 layers with a hidden size of 64.
Model Size. The trainable parameters of the model are
4.46M in total.

A.3. Used Data

InterHand2.6M [13]. For hand prior learning, we uti-
lize ‘train/Capture0Q’, ‘train/Capturel’, ‘train/Capture2’,

‘train/Capture3’, ‘train/Capture5’, ‘train/Capture6’,
‘train/Capture?’, ‘train/Capture8’, ‘train/Capture9’,
‘train/Capture10’, ‘train/Capturell’, ‘train/Capturel?2’,
‘train/Capture13’,  ‘train/Capturel4’, ‘train/Capturel5’,
‘train/Capture16’, ‘train/Capture20’, ‘train/Capture22’,

‘train/Capture23’, ‘train/Capture24’, and ‘train/Capture25’
for training, with one capture for an identity. Moreover, we
use  ‘0000_neutral_relaxed’,  ‘0009_thumbtucknormal’,
‘0019 _alligator_closed’, ‘0029 _indextip’,
‘0039_fingerspreadrigid’, ‘0048_index_point’, and
‘0058_middlefinger’ for evaluation and other poses
for training. For evaluation of one-shot avatars, we employ
‘test/Capture0/ROMO3_RT _No_Occlusion’, following
HandAvatar [3]. For each frame, we crop the hand region
with annotated detection boxes as the ground truth, which
is consistent with HandAvatar. Specifically, the box is
firstly regulated as a square box with 1.3 times expansion.
Then, the hand region is cropped and resized to 256 x 256
resolution. Unless otherwise stated, we all adopt the same
cropping approach for experiments of all the used data.

HanCo [21]. For quantitative experiments on the HanCo
dataset, we utilize sequence ‘0191° with the camera above
the hands (cam3, cam5, cam6, and cam7). We do not adopt
cameras below the hands because the capturing environ-
ment exhibits uneven lighting conditions and inconsistent
color calibration, which causes significantly inconsistent
appearances of the hands for the images captured below.
We utilize the MANO annotations and the provided hand



masks of this dataset for one-shot reconstruction.
MSCOCO [10]. To test OHTA’s performance for the chal-
lenging in-the-wild images, we take the whole-body version
of MSCOCO [7] for experiments. We utilize the pose esti-
mation results provided by InterWild [12] and generate the
masks using SAM [9].

OneHand10K [18]. In addition to MSCOCO, we also
provide in-the-wild results on the OneHand10K dataset,
which is one of the largest monocular hand pose estima-
tion datasets. Since OneHand10K does not provide labels
for 3D pose estimation of the hand, we utilize DIR [16] for
pose estimation and use the corresponding pose estimation
results to generate hand masks.

Real-captured Data. We also capture images of hands
with different identities and poses, ensuring a large demo-
graphic diversity among the subjects to show the robustness
of OHTA. The hand pose estimation results and masks for
those images are obtained by DIR [16].

A.4. Hand Prior Learning

The identity codes z € R%1*33 are learnable parameters ini-
tialized from a truncated normal distribution with standard
deviation ¢ = 0.02, where 21 denotes that we utilize 21
subjects of InterHand2.6M [13] for training and 33 denotes
the dimension of an identity’s code.

We follow the implementation of HandAvatar [3] to pre-
train PairOF. If not stated otherwise, we adopt Adam opti-
mizer [8] for optimization. The learning rate begins at 5e ~*
and decreases with exponential decay. The training process
has 300K steps with a batch size of 32.

For end-to-end prior learning, we use a patch strategy for
training with a patch size 32 x 32, following [3, 19]. The
learning rate begins at 5e~* and decreases with exponen-
tial decay. The complete prior learning process takes 300K
steps with a batch size of 2. Since the masks from MANO
are not well aligned with the hands in the image, using those
masks for personalized shape fitting will result in underper-
forming learning of texture prior. Therefore, we adopt SAM
[9] for mask prediction since it can obtain hand contour-
aligned results. Specifically, we utilize the ViT-H version
with 2D joint positions as the point prompts for predictions.

A.5. One-shot Reconstruction

Texture Inversion. For inversion, the input and rendered
image resolutions are 256 x 256. We initialize the identity
code as zero vectors for optimization. The complete inver-
sion process takes 50 steps with the learning rate of le 2.
Since the fingernails are not related to color calibration and
might dominate the inversion, we mask the fingernails for
optimization. Specifically, we utilize the classified occu-
pancy values of PairOF [3] to derive the masks of the fin-
gernails.

Texture Fitting. For fitting, we use a patch strategy with a
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Figure C. Hand avatar creation with text prompts.

patch size 128 x 128 for optimization. The complete inver-
sion process takes 100 steps with the learning rate of le 3.
The N" reference views for view regularization are gener-
ated by uniformly rotating the hands around the axis of the
MCP joint of the middle finger and wrist with each rotation
angle of (1\5711) The hand pose of the reference views are
set to flatting hand (canonical pose of MANO). Consider-
ing the fingernails may vary a lot from the inversion result
to the fitting target, we make use of an additional loss for
the fingernails using the fingernails mask derived from the

PairOF.

A.6. Application

Text-to-avatar. The complete pipeline for text-to-avatar is
illustrated in Fig. C. We use ControlNet 1.1 [20] with depth
maps as inputs for hand image generation. The generation
is guided by the depth map of the back of the hand and input
text prompts, using the default parameters of the model. Af-
ter generation, we utilize OHTA to reconstruct hand avatars
from the hand images. The optimizing process follows the
same procedure of one-shot reconstruction (Sec. A.5) ex-
cept that using 200 steps for texture fitting to better capture
complex details of the generated hands.

Editing. On account of our geometry based on the mesh
scaffold, we can edit the geometry of avatars by changing
the guided mesh scaffold. Since we utilize the MANO for
guidance, we can modify the shape parameters 3 of the
MANO to edit the geometry. For appearance editing, we
can first render a target view of the hand avatar and draw
desired content on the rendered image. Then, we can utilize
OHTA for one-shot reconstruction. This process does not
require texture inversion and only makes use of 100 steps’
texture fitting with the edited contents and the correspond-
ing mask to update the edited parts.



Latent space manipulation. With multiple identities for
training, we obtain a continuous latent space. Therefore,
we can conduct latent space manipulation, including latent
space sampling and interpolation. For sampling, we ran-
domly sample an identity code z’ € R3? from a normal dis-
tribution. Then, we can use z’ to obtain the sampled avatar.
For interpolation, we can take two identity codes z; and zo
for combinations: z” = tzy + (1 — t)z2, where ¢t € [0, 1].
With the interpolated identity code z”, we can obtain the
hand avatar with the interpolated appearance.

B. More Experiments

Comparison with Handy. As shown in Fig. D, we com-
pare our results with the in-the-wild results presented in the
Handy [15] paper. The experimental results demonstrate
that OHTA is capable of effectively modeling variations in
skin tone and the details of the hand.
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Figure D. Comparison with Handy on the results reported in the
original paper.

Different Resolution. Using high-resolution encodings
with dense points is able to model details of the texture,
while low-resolution encodings with sparse points are ca-
pable of modeling the long-range dependencies of the tex-
ture for a more consistent appearance. Therefore, we con-
duct experiments to tune the best resolution combinations.
Tab. A shows the performance of Hand Prior Network (HP-
Net) with different resolutions for the albedo prior learning.
We do not take resolutions larger than 4096 points since it
will introduce too much computation. The results show that
using 4 resolutions performs best. More resolutions (e.g., 8
resolutions) degenerating the performance may be because
1) resolutions of too sparse points (e.g., {32 x 28k=1}¢_ )
are not able to encode detailed information is beneficial for
the performance and 2) too many resolutions may lead to
optimization difficulty. Therefore, we adopt 4 resolutions
for our HPNet. The qualitative comparisons between using
multi-resolution and single-resolution are shown in Fig. E.
The results are tested with unseen poses. From those results,
we can see that using multi-resolution is able to model more
details of the hands and makes the learned overall appear-
ance more consistent with the ground-truth.

Different Mask. As shown in Fig. F, using masks better

Used Resolution PSNR LPIPS SSIM

{4096} 27.11 1296  0.890
{512,1024} 27.18 1291  0.890
{512, 4096} 2746  12.80 0.895

{512 x 2F=1}1_ 27.64 1223  0.896
{32 x2k=138_ 2732 1228 0.89%4

Table A. Comparison of using different resolution combinations
for the albedo field.

Figure E. Comparison between using multi-resolution and single-
resolution. The red ellipse indicates those not well-captured de-
tails by single-resolution.

aligned with the images is beneficial for personalized shape
fitting during hand prior learning stage. When the hand ge-
ometry is refined to be better aligned with the input images
using the masks from SAM, the learned texture prior can
better capture the details of the hand to improve the fidelity.

Masked Image Prediction Masked Image Prediction
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Figure F. Comparison between using different masks.

C. Discussion
C.1. Mesh-guided Representation

We adopt mesh-guided representation for several reasons.
For the geometry, the implicit occupancy field learned with
the mesh information is more robust for novel identities, as
proved in [11]. For the texture, the implicit texture field
learned on the mesh scaffolds can be transferred to other
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Figure G. Comparison between using different shadow approaches
for one-shot reconstruction. The above shows the comparisons
between environment modeling and our self-occlusion modeling.
The below illustrates the differences between whether to freeze the
shadow field for one-shot reconstruction.

hand shapes, which is shown by our geometry editing capa-
bility. This nature is important for the one-shot reconstruc-
tion since the hands have a large variety in shape. Other
texture representations (e.g., volume-based) [4, 14] have
poor performance for novel hand shapes since they learn
the neural hand representations in canonical space that have
the fixed hand size. Moreover, this representation is more
robust for one-shot fitting since it utilizes several neigh-
boring anchors’ features for prediction to obtain relatively
transition-smooth results.

C.2. Shadow Modeling

HPNet separates texture modeling into albedo and shadow
modeling, following a foundational principle similar to that
of HandAvatar [3]. However, our design diverges signifi-
cantly from HandAvatar, particularly in its motivation and
network structure.

For motivation, we aim to learn transferable shadow
prior knowledge for one-shot hand avatar creations, while
HandAvatar learns the illumination fields for a specific hand
that are not transferable. To this end, our shadow branch is
designed to be identity-shared and view-independent, which
can learn transferrable general self-occlusion effects that are
shared across different identities. The reasons for this de-
sign are twofold. On one hand, it is non-trivial to learn the
environmental lighting conditions based on a single image.
Thus, we should rely on shadow prior learned from training
data to generate plausible shadows for one-shot hand avatar
creations. On the other hand, the identity-shared and view-
independent shadow prior can be transferred to one-shot
creation, while the identity-specific and view-conditioned
prior learned by environmental lighting modeling cannot.

Figure H. Part of the learned identities in the prior learning stage.

The specific shadow network structure of HPNet in-
cludes the identity-shared design, hand finger pose without
global rotation as the pose condition, and the same multi-
resolution fields as our albedo field. In comparison, HandA-
vatar has a dedicated design for an illumination field with
positional encodings, directed soft occupancy, and a pose
with global rotation as input, enabling it to capture the en-
vironmental lighting conditions for different hand poses.

As shown in Fig. G, our learned shadow prior can be
effectively transferred to the novel identity to predict the
identity-shared self-occlusion effects when there is no ade-
quate knowledge of the real environmental lighting condi-
tion. In contrast, using identity-specific view-conditioned
environment modeling like HandAvatar [3] fails in recon-
structing the novel hand avatar with plausible shadows.

C.3. Difference between hand and other body parts

While recent studies have focused on one-shot human body
or head avatars, they are not suitable for hand modeling
due to inherent task differences. Created hand avatars aim
to produce highly consistent animations for different poses
and viewpoints, which is not similar to head avatars that
concentrate less on the performance around the backside of
the heads and are even not concerned about the animation
like Preface [1]. Human avatars also require animation con-
siderations, yet existing methodologies are inadequate for
hand animations. In the case of explicit approaches em-
ploying generative models, such as DINAR [17], our exper-
iments detailed in the main text for Handy [15] show that
these methods fall short in generating high-fidelity hand
avatars. Approaches employing diverse model priors like
ELICIT [6] mainly utilize the symmetry of human body ap-
pearance for texture modeling. This kind of method is not
appropriate for hands since modeling the hand appearance
is mainly about modeling the details of the hands rather than
only the hand skin tone. Those priors are not enough to
model invisible hand details. Another type of generalizable
NeRF approach, like SHERF [5], may also be inapplica-
ble for one-shot hand avatar creation due to its inability to
model high-quality unobserved parts of hands.



C.4. Discussion about OHTA and PhoneScan

PhoneScan [2] also proposes using prior models coupled
with fine-tuning to achieve few-shot reconstructions. We
provide a discussion about the similarities and differences
between OHTA and PhoneScan.

Similarity: Both OHTA and PhoneScan 1) embed the pri-
ors to the model by training on large-scale data, and 2)
include a fine-tuning process for adjusting the pre-trained
model to fit the target images.

Difference: OHTA differs from PhoneScan in various as-
pects. 1) motivation: OHTA aims at addressing hand avatar
creation from a single RGB image, while PhoneScan fo-
cuses on solving head avatar creation from RGB-D videos.
Even with methods shared similarities, this essential differ-
ence leads to different design priorities (described below);
2) optimization pipeline: OHTA reconstructs with inversion
and fitting, which highly relies on inversion from identity
space for regularization of the fitting. As described in [2],
PhoneScan has no identity space, predicts person-specific
information (i.e. bias maps) with the pre-trained model, and
fine-tunes the model with inputs. As mentioned in the ab-
lation of [2], there exist artifacts for novel views when only
fine-tuning with frontal images. In contrast, OHTA exhibits
robust performance for one-shot creation.

3) prior representation: OHTA exploits identity codes
and MLPs for geometry, albedo, and shadow prior learn-
ing, while PhoneScan embeds identity and expression prior
knowledge in pre-trained CNNs.

C.5. Correlation between input and identity codes

In Fig. I, we show the identity codes distribution with differ-
ent inputs, using t-SNE to embed the identity codes into 2D
space. We found that similar inputs have closer distances
in the identity space. For one-shot creation, identity codes
1) only relate to the hand albedo and 2) do not affect ge-
ometry, based on our hand representation design. Fig. | in
the main text demonstrates that our identity space is contin-
uous, allowing for interpolation between two hand identi-
ties while maintaining the hand geometry. Fig. R in supp.
shows OHTA’s capability for shape editing while preserving
the identity.

D. Qualitative Result
D.1. Prior Learning Result

Fig. H presents some of the learned identities in the prior
learning stage. The images are rendered with different iden-
tity codes and the same hand pose. Those results demon-
strate that our prior learning is able to capture the details
of different identities, which facilitates the one-shot recon-
struction.
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Figure I. t-SNE visualization of optimized identity codes from di-
verse images. Labels of clustering (colored points) are shown for
visualization.
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D.2. One-shot Result

To better show the robustness of OHTA, we show quan-
tities of reconstructed hand avatars from OHTA on In-
terHand2.6M [13], HanCo [21], MSCOCO [7, 10], One-
Hand10K [18], and real-captured data. The input images
of InterHand2.6M are all from the testing set that has no
identity and sample overlap with the prior learning stage.
As shown in Fig. K, our performance on InterHand2.6M
is consistent across diverse hand poses and identities. We
also take lots of samples varied a lot from the hands for
prior learning (InterHand2.6M) to further demonstrate the
one-shot capability of OHTA. Fig. L shows more visual
results of OHTA on HanCo. OHTA is quite robust for
different poses and viewpoints of the HanCo dataset. We
present more results of OHTA on the MSCOCO dataset in
Fig. M. To better validate the robustness of OHTA, we also
take lots of samples of the OneHand10K dataset for exper-
iments. The results are shown in Fig. N. Reconstructing
hand avatars for MSCOCO and OneHand10K is challeng-
ing because 1) the pose estimations of the hands exhibit ap-
parent deviations from the hands in the images and 2) the
hands are with low resolutions. Despite facing these chal-
lenges, OHTA is still robust enough to create hand avatars
with consistent animations. Fig. O presents more hand
avatars reconstructed by OHTA for the real-captured im-
ages.

D.3. Application Result

We provide more results for text-to-avatar in Fig. P, ap-
pearance editing in Fig. Q, and shape editing in Fig. R.
The animatable hand avatars from text prompts and appear-
ance editing justify OHTA’s capability to capture the highly
complex details for high-fidelity modeling. Moreover, the
shape editing further validates that the mesh-guided design
can fully transfer the texture prior to the novel hand shape,
which is essential for the one-shot reconstruction.



D.4. Video Demo

We also provide additional qualitative results in the attached
video.

E. Limitations and Failure Cases

In this section, we outline the limitations of our method to
provide a more complete sense of the work’s scope.

OHTA relies on pose estimations for creating avatars.
For some challenging cases as shown in Fig. J, e.g., QD
challenging lighting conditions and (2) skewed hand images,
OHTA may fail because the estimated poses have significant
errors or completely fail. However, if the pose estimation is
reliable, OHTA has the robustness to produce results.

Estimation Failed Estimation Success

Figure J. Failure cases of the estimator (left). With successful es-
timations, OHTA creates hand avatars (right). The images come
from the Onehand10K [18] dataset or the internet.

For 1) notably uneven lighting, and 2) some challeng-
ing poses with inaccurate estimations, OHTA may still fail.
OHTA cannot resolve notably uneven lighting since it can-
not detect the hand shadows on the input image. As shown
in the first row of Fig. S, using images with severe shad-
ows for one-shot reconstruction often results in undesirable
shadows on avatars and unnatural transitions between ob-
served and unobserved parts. OHTA relies on the estimated
pose results for geometry modeling, which forms the ba-
sis for texture modeling. Therefore, poor estimation results
lead to inferior texture modeling, especially for challenging
poses. Even though OHTA is robust to inaccurate estima-
tions to some extent, as shown in the results for in-the-wild
images, due to the learned hand priors, it is still incapable
of addressing highly inaccurate estimations for some chal-
lenging poses. The second row of Fig. S illustrates the tex-
ture misalignment and artifacts caused by those challenging
poses with inaccurate estimations.

Another limitation relates to the number of fingers. Since
the estimator and OHTA both utilize a hand parametric
model (e.g. MANO) with only five fingers. It is hard to
resolve hands with more or less than five fingers. We be-
lieve that exploring the use of non-parametric representa-
tions could help address this challenge.
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Figure K. Qualitative results on InterHand2.6M [13]. For each example, we show from left to right: (a) the target image, (b) the fitted
avatar rendered to the input view, and (c) the results of the hand avatar rendered in novel poses.

Figure L. Qualitative results on HanCo [21]. For each example, we show from left to right: (a) the target image, (b) the fitted avatar
rendered to the input view, and (c) the results of the hand avatar rendered in novel poses.



Figure M. In-the-wild results on MSCOCO [10]. For each example, we show from left to right: (a) the target image, (b) the fitted avatar
rendered to the input view, and (c) the results of the hand avatar rendered in novel poses.



Figure N. In-the-wild results on OneHand10K [18]. For each example, we show from left to right: (a) the target image, (b) the fitted
avatar rendered to the input view, and (c) the results of the hand avatar rendered in novel poses.
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Figure O. In-the-wild results on the real-captured data. For each example, we show from left to right: (a) the target image, (b) the fitted
avatar rendered to the input view, and (c) the results of the hand avatar rendered in novel poses.
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Figure P. Text-to-avatar results.
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Figure Q. Appearance editing results upon one-shot avatars.
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Figure R. Shape editing results upon one-shot avatars.
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Figure S. Failure cases due to notably uneven lighting (in the first row) or highly inaccurate pose estimation results (in the second row).
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