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Table 1. Weather parameter settings in Carla to simulate cloudy,
sunny, rainy, and foggy.

Parameters
Weather conditions

cloudy sunny rainy foggy

sun azimuth angle 300 300 -1 300
sun altitude angle 45 90 45 45

cloudiness 30 10 100 100
precipitation 0 0 100 0

precipitation deposits 0 0 90 0
fog density 1 0 3 15

Figure 1. Five types of cars used in our evaluations.

A. Implementation Details

A.1. Experimental Settings

Scenes. We generate the datasets for training and eval-
uating attack methods using the Carla simulator. For
autonomous driving scenarios, we selected a variety of
background environments, including urban roads, high-
ways, country roads, etc. To improve attack robustness in
bad weather conditions, we choose four kinds of weather:
foggy, rainy, sunny, and cloudy. The parameter settings for
controlling the weather in CARLA are shown in Table 1.

Cars. We select multiple types of cars in the Carla sim-
ulator. Lincoln MKZ2017, Seat Leon, Audi Etron, and Cit-
reon C3 are four types of cars used for effectiveness and ro-
bustness evaluation. Additionally, Tesla Model 3 is used for
ablation studies. All these cars are visualized in Figure 1.

Camera settings. For attack robustness, we take im-
ages with the RGB camera sensor in Carla at a random an-
gle of 0-360◦, within a 3-15m distance range and a 0.5-2m
height range, as shown in Figure 2. We take 8400 photo-
realistic images for attack texture generation (210 scenes ×
4 weather conditions × 10 camera positions). For a single
texture evaluation, we take a total of 6124 images (discrete
part: 30 scenes × 4 weather conditions × 10 camera posi-
tions × 4 cars, and continuous part: 4 weather conditions ×
331 frames).

Figure 2. Camera position settings in Carla.

Table 2. Transformations distribution.

Transformations Parameters Remark

Rotation ±20◦ Camera Simulation
Noise ±0.1 Random Noise

Brightness ±0.2 Illumination
Contrast [0.9, 1.1] Camera Parameters

Scale [0.25, 1.25] Distance/Resize

Figure 3. Adversarial cars with their initial patches (top right) in
Carla.

A.2. Compared Attacks

We provide detailed parameter settings of compared meth-
ods: APA [6], SPOO [1], APARATE [3], SAAM [4].

Patch-oriented attacks. APA and SAAM are patch-
oriented methods that fool MDE models into estimating
an incorrect depth for the regions where the patterns are
placed, independent of objects. APA is the first to attack
MDE models in real scenes. SAAM leverages a seman-
tic constraint to ensure the stealthiness of the generated ad-
versarial patch. Data augmentation techniques used in the



Figure 4. Comparisons of different attacks with various target vehicles and camera poses. The camera distance from the first row to the
last is 9m, 7m, 5m, and 3m, respectively, and the camera viewpoints are lateral, lateral rear, rear, and front, respectively.

above methods mainly include rotation, brightness, con-
trast, etc. Detailed parameter settings are listed in Table 2.

Object-oriented attacks. SPOO and APARATE are
object-oriented methods expected to affect the depth esti-
mation of the whole target region. SPOO is the first to
consider stealth for attacking MDE models in real scenes.
APARATE designs a penalized loss function to enlarge the
affected region. We use the same transformations in Ta-
ble 2. For the above four attacks, initial patches with the
size of 512×512 retrained on Monodepth2 [2] and the cor-
responding adversarial images in Carla are shown in Fig-
ure 3.

B. Evaluation Details

Various camera Poses and target vehicles. We evaluate
attack methods on Monodepth2 with various camera poses,
for distance and rotation. Figure 4 shows the attack perfor-
mance of different attack methods on four target vehicles, at
various distances and camera viewpoints. Our method out-
performs the remaining attack methods on different target
vehicles.

Various weather conditions. We evaluate attack meth-
ods on Monodepth2 under various weather conditions. Fig-
ure 5 shows the attack performance on the Audi Etron under
four weather conditions. Our method outperforms the re-

maining attack methods under various weather conditions.

Various target objects. We evaluate attack methods on
pedestrians, trucks, and buses against Monodepth2. Fig-
ure 6 shows the attack performance under default weather
conditions. Considering the different sizes of the target ob-
jects, the texture size is correspondingly scaled by different
factors.

Real-world evaluations. We provide detailed samples
to show our camouflage texture performance in the real
world. Figure 7 shows that the adversarial car can deceive
Monodepth2, regardless of viewpoints.

Impact on a downstream task. Following the experi-
ments in [1], we evaluate the impact of our attack on a point
cloud-based 3D object detection model, PointPillars [5],
and use Detection Rate as the metric to evaluate our method
on 3D object detection. We collect 8 videos with 331 frames
in Carla, where the observer drives sideways from the target
vehicle, simulating the scenario of an autonomous vehicle.
The target vehicles are covered by normal or camouflage
textures under the four preset weather mentioned above. As
shown in Figure 8, the benign vehicle can be correctly de-
tected with a 3D bounding box. In contrast, the pseudo-
Lidar point cloud of the camouflaged vehicles is severely
distorted, and camouflaged vehicles are not detected. Ta-
ble 3 shows the detection rate of the normal vehicle and



Figure 5. Comparisons of different attacks with various weather conditions: cloudy, sunny, rainy, and foggy. The camera viewpoint is the
rear and the distance is 6m.

Figure 6. Comparisons of different attacks with various target objects: pedestrian, truck, and bus. Considering the different sizes of the
target objects, the texture size is scaled by 0.5, 1.3, and 1.8, respectively.

camouflaged vehicles detected under different weather con-
ditions.
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Figure 7. Real-world evaluations with normal and our adversarial scaled car models.

Figure 8. Our attack against 3D object detection with various weather conditions.
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